# optimizer # This schedule is mainly used by models on indoor dataset, # e.g., VoteNet on SUNRGBD and ScanNet lr = 0.008 # max learning rate optimizer = dict(type='Adam', lr=lr) optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2)) lr_config = dict(policy='step', warmup=None, step=[24, 32]) # runtime settings total_epochs = 36