# For nuScenes dataset, we usually evaluate the model at the end of training. # Since the models are trained by 24 epochs by default, we set evaluation # interval to be 20. Please change the interval accordingly if you do not # use a default schedule. # optimizer lr = 1e-4 iter_num_in_epoch = 3712 # This schedule is mainly used by models on nuScenes dataset # max_norm=10 is better for SECOND optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01), clip_grad=dict(max_norm=35, norm_type=2)) # learning rate param_scheduler = [ dict( type='CosineAnnealingLR', T_max=8 * iter_num_in_epoch, eta_min=lr * 10, by_epoch=False, begin=0, end=8 * iter_num_in_epoch), dict( type='CosineAnnealingLR', T_max=12 * iter_num_in_epoch, eta_min=lr * 1e-4, by_epoch=False, begin=8 * iter_num_in_epoch, end=20 * iter_num_in_epoch), dict( type='CosineAnnealingBetas', T_max=8 * iter_num_in_epoch, eta_min=0.85 / 0.95, by_epoch=False, begin=0, end=8 * iter_num_in_epoch), dict( type='CosineAnnealingBetas', T_max=12 * iter_num_in_epoch, eta_min=1, by_epoch=False, begin=8 * iter_num_in_epoch, end=20 * iter_num_in_epoch) ] # runtime settings train_cfg = dict(by_epoch=True, max_epochs=20) val_cfg = dict(interval=1) test_cfg = dict()