# model settings model = dict( type='EncoderDecoder3D', data_preprocessor=dict(type='Det3DDataPreprocessor'), backbone=dict( type='PointNet2SASSG', in_channels=6, # [xyz, rgb], should be modified with dataset num_points=(1024, 256, 64, 16), radius=(0.1, 0.2, 0.4, 0.8), num_samples=(32, 32, 32, 32), sa_channels=((32, 32, 64), (64, 64, 128), (128, 128, 256), (256, 256, 512)), fp_channels=(), norm_cfg=dict(type='BN2d'), sa_cfg=dict( type='PointSAModule', pool_mod='max', use_xyz=True, normalize_xyz=False)), decode_head=dict( type='PointNet2Head', fp_channels=((768, 256, 256), (384, 256, 256), (320, 256, 128), (128, 128, 128, 128)), channels=128, dropout_ratio=0.5, conv_cfg=dict(type='Conv1d'), norm_cfg=dict(type='BN1d'), act_cfg=dict(type='ReLU'), loss_decode=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=False, class_weight=None, # should be modified with dataset loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='slide'))