import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from tests.utils.model_utils import (_create_detector_inputs, _get_detector_cfg, _setup_seed) class TestMVXNet(unittest.TestCase): def test_mvxnet(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'DynamicMVXFasterRCNN') _setup_seed(0) DefaultScope.get_instance('test_mvxnet', scope_name='mmdet3d') mvx_net_cfg = _get_detector_cfg( 'mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py' # noqa ) model = MODELS.build(mvx_net_cfg) num_gt_instance = 1 data = [ _create_detector_inputs( with_img=False, num_gt_instance=num_gt_instance, points_feat_dim=4) ] if torch.cuda.is_available(): model = model.cuda() # test simple_test batch_inputs, data_samples = model.data_preprocessor(data, True) # save the memory when do the unitest with torch.no_grad(): torch.cuda.empty_cache() losses = model.forward(batch_inputs, data_samples, mode='loss') assert losses['loss_cls'][0] >= 0 assert losses['loss_bbox'][0] >= 0 assert losses['loss_dir'][0] >= 0 with torch.no_grad(): results = model.forward( batch_inputs, data_samples, mode='predict') self.assertEqual(len(results), len(data)) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # TODO test_aug_test