import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from tests.utils.model_utils import (_create_detector_inputs, _get_detector_cfg, _setup_seed) class Test3DSSD(unittest.TestCase): def test_3dssd(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'SSD3DNet') DefaultScope.get_instance('test_ssd3d', scope_name='mmdet3d') _setup_seed(0) voxel_net_cfg = _get_detector_cfg('3dssd/3dssd_4x4_kitti-3d-car.py') model = MODELS.build(voxel_net_cfg) num_gt_instance = 3 data = [ _create_detector_inputs( num_gt_instance=num_gt_instance, num_classes=1) ] if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): batch_inputs, data_samples = model.data_preprocessor( data, True) torch.cuda.empty_cache() results = model.forward( batch_inputs, data_samples, mode='predict') self.assertEqual(len(results), len(data)) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) losses = model.forward(batch_inputs, data_samples, mode='loss') self.assertGreater(losses['centerness_loss'], 0)