# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch def gaussian_2d(shape, sigma=1): """Generate gaussian map. Args: shape (list[int]): Shape of the map. sigma (float, optional): Sigma to generate gaussian map. Defaults to 1. Returns: np.ndarray: Generated gaussian map. """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_heatmap_gaussian(heatmap, center, radius, k=1): """Get gaussian masked heatmap. Args: heatmap (torch.Tensor): Heatmap to be masked. center (torch.Tensor): Center coord of the heatmap. radius (int): Radius of gaussian. K (int, optional): Multiple of masked_gaussian. Defaults to 1. Returns: torch.Tensor: Masked heatmap. """ diameter = 2 * radius + 1 gaussian = gaussian_2d((diameter, diameter), sigma=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = torch.from_numpy( gaussian[radius - top:radius + bottom, radius - left:radius + right]).to(heatmap.device, torch.float32) if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def gaussian_radius(det_size, min_overlap=0.5): """Get radius of gaussian. Args: det_size (tuple[torch.Tensor]): Size of the detection result. min_overlap (float, optional): Gaussian_overlap. Defaults to 0.5. Returns: torch.Tensor: Computed radius. """ height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = torch.sqrt(b1**2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = torch.sqrt(b2**2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = torch.sqrt(b3**2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) def get_ellip_gaussian_2D(heatmap, center, radius_x, radius_y, k=1): """Generate 2D ellipse gaussian heatmap. Args: heatmap (Tensor): Input heatmap, the gaussian kernel will cover on it and maintain the max value. center (list[int]): Coord of gaussian kernel's center. radius_x (int): X-axis radius of gaussian kernel. radius_y (int): Y-axis radius of gaussian kernel. k (int, optional): Coefficient of gaussian kernel. Default: 1. Returns: out_heatmap (Tensor): Updated heatmap covered by gaussian kernel. """ diameter_x, diameter_y = 2 * radius_x + 1, 2 * radius_y + 1 gaussian_kernel = ellip_gaussian2D((radius_x, radius_y), sigma_x=diameter_x / 6, sigma_y=diameter_y / 6, dtype=heatmap.dtype, device=heatmap.device) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius_x), min(width - x, radius_x + 1) top, bottom = min(y, radius_y), min(height - y, radius_y + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian_kernel[radius_y - top:radius_y + bottom, radius_x - left:radius_x + right] out_heatmap = heatmap torch.max( masked_heatmap, masked_gaussian * k, out=out_heatmap[y - top:y + bottom, x - left:x + right]) return out_heatmap def ellip_gaussian2D(radius, sigma_x, sigma_y, dtype=torch.float32, device='cpu'): """Generate 2D ellipse gaussian kernel. Args: radius (tuple(int)): Ellipse radius (radius_x, radius_y) of gaussian kernel. sigma_x (int): X-axis sigma of gaussian function. sigma_y (int): Y-axis sigma of gaussian function. dtype (torch.dtype, optional): Dtype of gaussian tensor. Default: torch.float32. device (str, optional): Device of gaussian tensor. Default: 'cpu'. Returns: h (Tensor): Gaussian kernel with a ``(2 * radius_y + 1) * (2 * radius_x + 1)`` shape. """ x = torch.arange( -radius[0], radius[0] + 1, dtype=dtype, device=device).view(1, -1) y = torch.arange( -radius[1], radius[1] + 1, dtype=dtype, device=device).view(-1, 1) h = (-(x * x) / (2 * sigma_x * sigma_x) - (y * y) / (2 * sigma_y * sigma_y)).exp() h[h < torch.finfo(h.dtype).eps * h.max()] = 0 return h