# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple import torch from mmcv.runner import force_fp32 from torch import Tensor from torch.nn import functional as F from mmdet3d.registry import MODELS from mmdet3d.utils import ConfigType, OptConfigType, OptMultiConfig from .voxelnet import VoxelNet @MODELS.register_module() class DynamicVoxelNet(VoxelNet): r"""VoxelNet using `dynamic voxelization `_. """ def __init__(self, voxel_layer: ConfigType, voxel_encoder: ConfigType, middle_encoder: ConfigType, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( voxel_layer=voxel_layer, voxel_encoder=voxel_encoder, middle_encoder=middle_encoder, backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg) @torch.no_grad() @force_fp32() def voxelize(self, points: List[torch.Tensor]) -> tuple: """Apply dynamic voxelization to points. Args: points (list[Tensor]): Points of each sample. Returns: tuple[Tensor]: Concatenated points and coordinates. """ coors = [] # dynamic voxelization only provide a coors mapping for res in points: res_coors = self.voxel_layer(res) coors.append(res_coors) points = torch.cat(points, dim=0) coors_batch = [] for i, coor in enumerate(coors): coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) coors_batch.append(coor_pad) coors_batch = torch.cat(coors_batch, dim=0) return points, coors_batch def extract_feat(self, batch_inputs_dict: dict) -> Tuple[Tensor]: """Extract features from points.""" # TODO: Remove voxelization to datapreprocessor points = batch_inputs_dict['points'] voxels, coors = self.voxelize(points) voxel_features, feature_coors = self.voxel_encoder(voxels, coors) batch_size = coors[-1, 0].item() + 1 x = self.middle_encoder(voxel_features, feature_coors, batch_size) x = self.backbone(x) if self.with_neck: x = self.neck(x) return x