# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Sequence import torch from torch import Tensor from torch.nn import functional as F from mmdet3d.registry import MODELS from .mvx_two_stage import MVXTwoStageDetector @MODELS.register_module() class MVXFasterRCNN(MVXTwoStageDetector): """Multi-modality VoxelNet using Faster R-CNN.""" def __init__(self, **kwargs): super(MVXFasterRCNN, self).__init__(**kwargs) @MODELS.register_module() class DynamicMVXFasterRCNN(MVXTwoStageDetector): """Multi-modality VoxelNet using Faster R-CNN and dynamic voxelization.""" def __init__(self, **kwargs): super(DynamicMVXFasterRCNN, self).__init__(**kwargs) @torch.no_grad() def voxelize(self, points): """Apply dynamic voxelization to points. Args: points (list[torch.Tensor]): Points of each sample. Returns: tuple[torch.Tensor]: Concatenated points and coordinates. """ coors = [] # dynamic voxelization only provide a coors mapping for res in points: res_coors = self.pts_voxel_layer(res) coors.append(res_coors) points = torch.cat(points, dim=0) coors_batch = [] for i, coor in enumerate(coors): coor_pad = F.pad(coor, (1, 0), mode='constant', value=i) coors_batch.append(coor_pad) coors_batch = torch.cat(coors_batch, dim=0) return points, coors_batch def extract_pts_feat( self, points: List[Tensor], img_feats: Optional[Sequence[Tensor]] = None, batch_input_metas: Optional[List[dict]] = None ) -> Sequence[Tensor]: """Extract features of points. Args: points (List[tensor]): Point cloud of multiple inputs. img_feats (list[Tensor], tuple[tensor], optional): Features from image backbone. batch_input_metas (list[dict], optional): The meta information of multiple samples. Defaults to True. Returns: Sequence[tensor]: points features of multiple inputs from backbone or neck. """ if not self.with_pts_bbox: return None voxels, coors = self.voxelize(points) voxel_features, feature_coors = self.pts_voxel_encoder( voxels, coors, points, img_feats, batch_input_metas) batch_size = coors[-1, 0] + 1 x = self.pts_middle_encoder(voxel_features, feature_coors, batch_size) x = self.pts_backbone(x) if self.with_pts_neck: x = self.pts_neck(x) return x