_base_ = [ '../_base_/models/hv_pointpillars_secfpn_kitti.py', '../_base_/datasets/kitti-3d-3class.py', '../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py' ] point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] # dataset settings data_root = 'data/kitti/' class_names = ['Pedestrian', 'Cyclist', 'Car'] # PointPillars adopted a different sampling strategies among classes db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), classes=class_names, sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15)) # PointPillars uses different augmentation hyper parameters train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline, classes=class_names)), val=dict(pipeline=test_pipeline, classes=class_names), test=dict(pipeline=test_pipeline, classes=class_names)) # In practice PointPillars also uses a different schedule # optimizer lr = 0.001 optimizer = dict(lr=lr) # max_norm=35 is slightly better than 10 for PointPillars in the earlier # development of the codebase thus we keep the setting. But we does not # specifically tune this parameter. optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # PointPillars usually need longer schedule than second, we simply double # the training schedule. Do remind that since we use RepeatDataset and # repeat factor is 2, so we actually train 160 epochs. runner = dict(max_epochs=80) # Use evaluation interval=2 reduce the number of evaluation timese evaluation = dict(interval=2)