import argparse import mmcv import os import torch from mmcv import Config, DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmdet3d.apis import single_gpu_test from mmdet3d.datasets import build_dataloader, build_dataset from mmdet3d.models import build_detector from mmdet.apis import multi_gpu_test, set_random_seed from mmdet.core import wrap_fp16_model from tools.fuse_conv_bn import fuse_module def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where results will be saved') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu_collect is not specified') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show, \ ('Please specify at least one operation (save/eval/format/show the ' 'results) with the argument "--out", "--eval", "--format_only" ' 'or "--show"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # set random seeds if args.seed is not None: set_random_seed(args.seed, deterministic=args.deterministic) # build the dataloader samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_module(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.options is None else args.options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs) if __name__ == '__main__': main()