# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from typing import Dict, Optional, Sequence import mmcv import numpy as np from mmengine.evaluator import BaseMetric from mmengine.logging import MMLogger from mmdet3d.evaluation import seg_eval from mmdet3d.registry import METRICS @METRICS.register_module() class SegMetric(BaseMetric): """3D semantic segmentation evaluation metric. Args: collect_device (str, optional): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None. pklfile_prefix (str, optional): The prefix of pkl files, including the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str, optional): The prefix of submission data. If not specified, the submission data will not be generated. Default: None. """ def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None, pklfile_prefix: str = None, submission_prefix: str = None, **kwargs): self.pklfile_prefix = pklfile_prefix self.submission_prefix = submission_prefix super(SegMetric, self).__init__( prefix=prefix, collect_device=collect_device) def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for data_sample in data_samples: pred_3d = data_sample['pred_pts_seg'] eval_ann_info = data_sample['eval_ann_info'] cpu_pred_3d = dict() for k, v in pred_3d.items(): if hasattr(v, 'to'): cpu_pred_3d[k] = v.to('cpu').numpy() else: cpu_pred_3d[k] = v self.results.append((eval_ann_info, cpu_pred_3d)) def format_results(self, results): r"""Format the results to txt file. Refer to `ScanNet documentation `_. Args: outputs (list[dict]): Testing results of the dataset. Returns: tuple: (outputs, tmp_dir), outputs is the detection results, tmp_dir is the temporal directory created for saving submission files when ``submission_prefix`` is not specified. """ submission_prefix = self.submission_prefix if submission_prefix is None: tmp_dir = tempfile.TemporaryDirectory() submission_prefix = osp.join(tmp_dir.name, 'results') mmcv.mkdir_or_exist(submission_prefix) ignore_index = self.dataset_meta['ignore_index'] # need to map network output to original label idx cat2label = np.zeros(len(self.dataset_meta['label2cat'])).astype( np.int64) for original_label, output_idx in self.dataset_meta['label2cat'].items( ): if output_idx != ignore_index: cat2label[output_idx] = original_label for i, (eval_ann, result) in enumerate(results): sample_idx = eval_ann['point_cloud']['lidar_idx'] pred_sem_mask = result['semantic_mask'].numpy().astype(np.int64) pred_label = cat2label[pred_sem_mask] curr_file = f'{submission_prefix}/{sample_idx}.txt' np.savetxt(curr_file, pred_label, fmt='%d') def compute_metrics(self, results: list) -> Dict[str, float]: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: Dict[str, float]: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ logger: MMLogger = MMLogger.get_current_instance() if self.submission_prefix: self.format_results(results) return None label2cat = self.dataset_meta['label2cat'] ignore_index = self.dataset_meta['ignore_index'] gt_semantic_masks = [] pred_semantic_masks = [] for eval_ann, sinlge_pred_results in results: gt_semantic_masks.append(eval_ann['pts_semantic_mask']) pred_semantic_masks.append( sinlge_pred_results['pts_semantic_mask']) ret_dict = seg_eval( gt_semantic_masks, pred_semantic_masks, label2cat, ignore_index, logger=logger) return ret_dict