# dataset settings dataset_type = 'ScanNetDataset' data_root = './data/scannet/' class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin') train_pipeline = [ dict( type='LoadPointsFromFile', shift_height=True, load_dim=6, use_dim=[0, 1, 2]), dict( type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_mask_3d=True, with_seg_3d=True), dict( type='PointSegClassMapping', valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39)), dict(type='IndoorPointSample', num_points=40000), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.087266, 0.087266], scale_ratio_range=[1.0, 1.0], shift_height=True), dict(type='DefaultFormatBundle3D', class_names=class_names), dict( type='Collect3D', keys=[ 'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', 'pts_instance_mask' ]) ] test_pipeline = [ dict( type='LoadPointsFromFile', shift_height=True, load_dim=6, use_dim=[0, 1, 2]), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type='IndoorPointSample', num_points=40000), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'scannet_infos_train.pkl', pipeline=train_pipeline, filter_empty_gt=False, classes=class_names, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='Depth')), val=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'scannet_infos_val.pkl', pipeline=test_pipeline, classes=class_names, test_mode=True, box_type_3d='Depth'), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'scannet_infos_val.pkl', pipeline=test_pipeline, classes=class_names, test_mode=True, box_type_3d='Depth'))