# dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Pedestrian', 'Cyclist', 'Car'] point_cloud_range = [0, -40, -3, 70.4, 40, 1] input_modality = dict(use_lidar=True, use_camera=False) db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), classes=class_names, sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6)) file_client_args = dict(backend='disk') # Uncomment the following if use ceph or other file clients. # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # for more details. # file_client_args = dict( # backend='petrel', path_mapping=dict(data='s3://kitti_data/')) train_pipeline = [ dict( type='LoadPointsFromFile', load_dim=4, use_dim=4, file_client_args=file_client_args), dict( type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, file_client_args=file_client_args), dict(type='ObjectSample', db_sampler=db_sampler), dict( type='ObjectNoise', num_try=100, translation_std=[1.0, 1.0, 0.5], global_rot_range=[0.0, 0.0], rot_range=[-0.78539816, 0.78539816]), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', load_dim=4, use_dim=4, file_client_args=file_client_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] data = dict( samples_per_gpu=6, workers_per_gpu=4, train=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'kitti_infos_train.pkl', split='training', pts_prefix='velodyne_reduced', pipeline=train_pipeline, modality=input_modality, classes=class_names, test_mode=False, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR')), val=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'kitti_infos_val.pkl', split='training', pts_prefix='velodyne_reduced', pipeline=test_pipeline, modality=input_modality, classes=class_names, test_mode=True, box_type_3d='LiDAR'), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'kitti_infos_val.pkl', split='training', pts_prefix='velodyne_reduced', pipeline=test_pipeline, modality=input_modality, classes=class_names, test_mode=True, box_type_3d='LiDAR')) evaluation = dict(interval=1)