// Modified from // https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roiaware_pool3d/src/roiaware_pool3d_kernel.cu // RoI-aware point cloud feature pooling // Written by Shaoshuai Shi // All Rights Reserved 2019. #include #include #include #define CHECK_CUDA(x) \ TORCH_CHECK(x.device().is_cuda(), #x, " must be a CUDAtensor ") #define CHECK_CONTIGUOUS(x) \ TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ") #define CHECK_INPUT(x) \ CHECK_CUDA(x); \ CHECK_CONTIGUOUS(x) void roiaware_pool3d_launcher(int boxes_num, int pts_num, int channels, int max_pts_each_voxel, int out_x, int out_y, int out_z, const float *rois, const float *pts, const float *pts_feature, int *argmax, int *pts_idx_of_voxels, float *pooled_features, int pool_method); void roiaware_pool3d_backward_launcher(int boxes_num, int out_x, int out_y, int out_z, int channels, int max_pts_each_voxel, const int *pts_idx_of_voxels, const int *argmax, const float *grad_out, float *grad_in, int pool_method); int roiaware_pool3d_gpu(at::Tensor rois, at::Tensor pts, at::Tensor pts_feature, at::Tensor argmax, at::Tensor pts_idx_of_voxels, at::Tensor pooled_features, int pool_method); int roiaware_pool3d_gpu_backward(at::Tensor pts_idx_of_voxels, at::Tensor argmax, at::Tensor grad_out, at::Tensor grad_in, int pool_method); int points_in_boxes_cpu(at::Tensor boxes_tensor, at::Tensor pts_tensor, at::Tensor pts_indices_tensor); int points_in_boxes_gpu(at::Tensor boxes_tensor, at::Tensor pts_tensor, at::Tensor box_idx_of_points_tensor); int roiaware_pool3d_gpu(at::Tensor rois, at::Tensor pts, at::Tensor pts_feature, at::Tensor argmax, at::Tensor pts_idx_of_voxels, at::Tensor pooled_features, int pool_method) { // params rois: (N, 7) [x, y, z, w, l, h, ry] in LiDAR coordinate // params pts: (npoints, 3) [x, y, z] in LiDAR coordinate // params pts_feature: (npoints, C) // params argmax: (N, out_x, out_y, out_z, C) // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) // params pooled_features: (N, out_x, out_y, out_z, C) // params pool_method: 0: max_pool 1: avg_pool CHECK_INPUT(rois); CHECK_INPUT(pts); CHECK_INPUT(pts_feature); CHECK_INPUT(argmax); CHECK_INPUT(pts_idx_of_voxels); CHECK_INPUT(pooled_features); int boxes_num = rois.size(0); int pts_num = pts.size(0); int channels = pts_feature.size(1); int max_pts_each_voxel = pts_idx_of_voxels.size(4); // index 0 is the counter int out_x = pts_idx_of_voxels.size(1); int out_y = pts_idx_of_voxels.size(2); int out_z = pts_idx_of_voxels.size(3); assert((out_x < 256) && (out_y < 256) && (out_z < 256)); // we encode index with 8bit const float *rois_data = rois.data_ptr(); const float *pts_data = pts.data_ptr(); const float *pts_feature_data = pts_feature.data_ptr(); int *argmax_data = argmax.data_ptr(); int *pts_idx_of_voxels_data = pts_idx_of_voxels.data_ptr(); float *pooled_features_data = pooled_features.data_ptr(); roiaware_pool3d_launcher( boxes_num, pts_num, channels, max_pts_each_voxel, out_x, out_y, out_z, rois_data, pts_data, pts_feature_data, argmax_data, pts_idx_of_voxels_data, pooled_features_data, pool_method); return 1; } int roiaware_pool3d_gpu_backward(at::Tensor pts_idx_of_voxels, at::Tensor argmax, at::Tensor grad_out, at::Tensor grad_in, int pool_method) { // params pts_idx_of_voxels: (N, out_x, out_y, out_z, max_pts_each_voxel) // params argmax: (N, out_x, out_y, out_z, C) // params grad_out: (N, out_x, out_y, out_z, C) // params grad_in: (npoints, C), return value // params pool_method: 0: max_pool 1: avg_pool CHECK_INPUT(pts_idx_of_voxels); CHECK_INPUT(argmax); CHECK_INPUT(grad_out); CHECK_INPUT(grad_in); int boxes_num = pts_idx_of_voxels.size(0); int out_x = pts_idx_of_voxels.size(1); int out_y = pts_idx_of_voxels.size(2); int out_z = pts_idx_of_voxels.size(3); int max_pts_each_voxel = pts_idx_of_voxels.size(4); // index 0 is the counter int channels = grad_out.size(4); const int *pts_idx_of_voxels_data = pts_idx_of_voxels.data_ptr(); const int *argmax_data = argmax.data_ptr(); const float *grad_out_data = grad_out.data_ptr(); float *grad_in_data = grad_in.data_ptr(); roiaware_pool3d_backward_launcher(boxes_num, out_x, out_y, out_z, channels, max_pts_each_voxel, pts_idx_of_voxels_data, argmax_data, grad_out_data, grad_in_data, pool_method); return 1; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &roiaware_pool3d_gpu, "roiaware pool3d forward (CUDA)"); m.def("backward", &roiaware_pool3d_gpu_backward, "roiaware pool3d backward (CUDA)"); m.def("points_in_boxes_gpu", &points_in_boxes_gpu, "points_in_boxes_gpu forward (CUDA)"); m.def("points_in_boxes_cpu", &points_in_boxes_cpu, "points_in_boxes_cpu forward (CPU)"); }