# Copyright (c) OpenMMLab. All rights reserved. from mmengine.hooks import Hook from mmengine.model import is_model_wrapper from mmengine.runner import Runner from mmdet3d.datasets.transforms import ObjectSample from mmdet3d.registry import HOOKS @HOOKS.register_module() class DisableObjectSampleHook(Hook): """The hook of disabling augmentations during training. Args: disable_after_epoch (int): The number of epochs after which the ``ObjectSample`` will be closed in the training. Defaults to 15. """ def __init__(self, disable_after_epoch: int = 15): self.disable_after_epoch = disable_after_epoch self._restart_dataloader = False def before_train_epoch(self, runner: Runner): """Close augmentation. Args: runner (Runner): The runner. """ epoch = runner.epoch train_loader = runner.train_dataloader model = runner.model # TODO: refactor after mmengine using model wrapper if is_model_wrapper(model): model = model.module if epoch == self.disable_after_epoch: runner.logger.info('Disable ObjectSample') for transform in runner.train_dataloader.dataset.pipeline.transforms: # noqa: E501 if isinstance(transform, ObjectSample): assert hasattr(transform, 'disabled') transform.disabled = True # The dataset pipeline cannot be updated when persistent_workers # is True, so we need to force the dataloader's multi-process # restart. This is a very hacky approach. if hasattr(train_loader, 'persistent_workers' ) and train_loader.persistent_workers is True: train_loader._DataLoader__initialized = False train_loader._iterator = None self._restart_dataloader = True else: # Once the restart is complete, we need to restore # the initialization flag. if self._restart_dataloader: train_loader._DataLoader__initialized = True