# Demo ## Introduction We provide scripts for multi-modality/single-modality (LiDAR-based/vision-based), indoor/outdoor 3D detection and 3D semantic segmentation demos. The pre-trained models can be downloaded from [model zoo](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/model_zoo.md/). We provide pre-processed sample data from KITTI, SUN RGB-D, nuScenes and ScanNet dataset. You can use any other data following our pre-processing steps. ## Testing ### 3D Detection #### Single-modality demo To test a 3D detector on point cloud data, simply run: ```shell python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}] [--show] ``` The visualization results including a point cloud and predicted 3D bounding boxes will be saved in `${OUT_DIR}/PCD_NAME`, which you can open using [MeshLab](http://www.meshlab.net/). Note that if you set the flag `--show`, the prediction result will be displayed online using [Open3D](http://www.open3d.org/). Example on KITTI data using [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) model: ```shell python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth ``` Example on SUN RGB-D data using [VoteNet](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/votenet) model: ```shell python demo/pcd_demo.py demo/data/sunrgbd/sunrgbd_000017.bin configs/votenet/votenet_16x8_sunrgbd-3d-10class.py checkpoints/votenet_16x8_sunrgbd-3d-10class_20200620_230238-4483c0c0.pth ``` Remember to convert the VoteNet checkpoint if you are using mmdetection3d version >= 0.6.0. See its [README](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/votenet/README.md/) for detailed instructions on how to convert the checkpoint. #### Multi-modality demo To test a 3D detector on multi-modality data (typically point cloud and image), simply run: ```shell python demo/multi_modality_demo.py ${PCD_FILE} ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}] [--show] ``` where the `ANNOTATION_FILE` should provide the 3D to 2D projection matrix. The visualization results including a point cloud, an image, predicted 3D bounding boxes and their projection on the image will be saved in `${OUT_DIR}/PCD_NAME`. Example on KITTI data using [MVX-Net](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/mvxnet) model: ```shell python demo/multi_modality_demo.py demo/data/kitti/kitti_000008.bin demo/data/kitti/kitti_000008.png demo/data/kitti/kitti_000008_infos.pkl configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20200621_003904-10140f2d.pth ``` Example on SUN RGB-D data using [ImVoteNet](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/imvotenet) model: ```shell python demo/multi_modality_demo.py demo/data/sunrgbd/sunrgbd_000017.bin demo/data/sunrgbd/sunrgbd_000017.jpg demo/data/sunrgbd/sunrgbd_000017_infos.pkl configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py checkpoints/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210323_184021-d44dcb66.pth ``` ### Monocular 3D Detection To test a monocular 3D detector on image data, simply run: ```shell python demo/mono_det_demo.py ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--out-dir ${OUT_DIR}] [--show] ``` where the `ANNOTATION_FILE` should provide the 3D to 2D projection matrix (camera intrinsic matrix). The visualization results including an image and its predicted 3D bounding boxes projected on the image will be saved in `${OUT_DIR}/PCD_NAME`. Example on nuScenes data using [FCOS3D](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/fcos3d) model: ```shell python demo/mono_det_demo.py demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525_mono3d.coco.json configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune.py checkpoints/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210427_091419-35aaaad0.pth ``` Note that when visualizing results of monocular 3D detection for flipped images, the camera intrinsic matrix should also be modified accordingly. See more details and examples in PR [#744](https://github.com/open-mmlab/mmdetection3d/pull/744). ### 3D Segmentation To test a 3D segmentor on point cloud data, simply run: ```shell python demo/pc_seg_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--out-dir ${OUT_DIR}] [--show] ``` The visualization results including a point cloud and its predicted 3D segmentation mask will be saved in `${OUT_DIR}/PCD_NAME`. Example on ScanNet data using [PointNet++ (SSG)](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointnet2) model: ```shell python demo/pc_seg_demo.py demo/data/scannet/scene0000_00.bin configs/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py checkpoints/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth ```