import os.path as osp import mmcv import numpy as np from mmdet3d.datasets.pipelines import Compose def test_scannet_pipeline(): np.random.seed(0) pipelines = [ dict( type='IndoorLoadPointsFromFile', use_height=True, load_dim=6, use_dim=[0, 1, 2]), dict(type='IndoorLoadAnnotations3D'), dict(type='IndoorPointSample', num_points=5), dict(type='IndoorFlipData', flip_ratio_yz=1.0, flip_ratio_xz=1.0), dict( type='IndoorGlobalRotScale', use_height=True, rot_range=[-np.pi * 1 / 36, np.pi * 1 / 36], scale_range=None), ] pipeline = Compose(pipelines) info = mmcv.load('./tests/data/scannet/scannet_infos.pkl') results = dict() data_path = './tests/data/scannet/scannet_train_instance_data' results['data_path'] = data_path info = info[0] scan_name = info['point_cloud']['lidar_idx'] results['pts_filename'] = osp.join(data_path, f'{scan_name}_vert.npy') if info['annos']['gt_num'] != 0: scannet_gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'] scannet_gt_labels = info['annos']['class'].reshape(-1, 1) scannet_gt_bboxes_3d_mask = np.ones_like(scannet_gt_labels) else: scannet_gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32) scannet_gt_labels = np.zeros((1, 1)) scannet_gt_bboxes_3d_mask = np.zeros((1, 1)) scan_name = info['point_cloud']['lidar_idx'] results['pts_instance_mask_path'] = osp.join(data_path, f'{scan_name}_ins_label.npy') results['pts_semantic_mask_path'] = osp.join(data_path, f'{scan_name}_sem_label.npy') results['gt_bboxes_3d'] = scannet_gt_bboxes_3d results['gt_labels'] = scannet_gt_labels results['gt_bboxes_3d_mask'] = scannet_gt_bboxes_3d_mask results = pipeline(results) points = results['points'] gt_bboxes_3d = results['gt_bboxes_3d'] gt_labels = results['gt_labels'] pts_semantic_mask = results['pts_semantic_mask'] pts_instance_mask = results['pts_instance_mask'] expected_points = np.array( [[-2.9078157, -1.9569951, 2.3543026, 2.389488], [-0.71360034, -3.4359822, 2.1330001, 2.1681855], [-1.332374, 1.474838, -0.04405887, -0.00887359], [2.1336637, -1.3265059, -0.02880373, 0.00638155], [0.43895668, -3.0259454, 1.5560012, 1.5911865]]) expected_gt_bboxes_3d = np.array([ [-1.5005362, -3.512584, 1.8565295, 1.7457027, 0.24149807, 0.57235193], [-2.8848705, 3.4961755, 1.5268247, 0.66170084, 0.17433672, 0.67153597], [-1.1585636, -2.192365, 0.61649567, 0.5557011, 2.5375574, 1.2144762], [-2.930457, -2.4856408, 0.9722377, 0.6270478, 1.8461524, 0.28697443], [3.3114715, -0.00476722, 1.0712197, 0.46191898, 3.8605113, 2.1603441] ]) expected_gt_labels = np.array([ 6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0, 0, 0, 0, 5, 5, 5 ]) expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15]) expected_pts_instance_mask = np.array([44, 22, 10, 10, 57]) assert np.allclose(points, expected_points) assert np.allclose(gt_bboxes_3d[:5, :], expected_gt_bboxes_3d) assert np.all(gt_labels.flatten() == expected_gt_labels) assert np.all(pts_semantic_mask == expected_pts_semantic_mask) assert np.all(pts_instance_mask == expected_pts_instance_mask)