from functools import partial import torch import torch.nn as nn from mmcv.cnn import constant_init, kaiming_init from torch.nn import Sequential from torch.nn.modules.batchnorm import _BatchNorm from mmdet.models import NECKS from mmdet.ops import build_norm_layer from .. import builder @NECKS.register_module class SECONDFPN(nn.Module): """Compare with RPN, RPNV2 support arbitrary number of stage. """ def __init__(self, use_norm=True, in_channels=[128, 128, 256], upsample_strides=[1, 2, 4], num_upsample_filters=[256, 256, 256], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01)): # if for GroupNorm, # cfg is dict(type='GN', num_groups=num_groups, eps=1e-3, affine=True) super(SECONDFPN, self).__init__() assert len(num_upsample_filters) == len(upsample_strides) self.in_channels = in_channels ConvTranspose2d = partial(nn.ConvTranspose2d, bias=False) deblocks = [] for i, num_upsample_filter in enumerate(num_upsample_filters): norm_layer = build_norm_layer(norm_cfg, num_upsample_filter)[1] deblock = Sequential( ConvTranspose2d( in_channels[i], num_upsample_filter, upsample_strides[i], stride=upsample_strides[i]), norm_layer, nn.ReLU(inplace=True), ) deblocks.append(deblock) self.deblocks = nn.ModuleList(deblocks) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) def forward(self, x): assert len(x) == len(self.in_channels) ups = [deblock(x[i]) for i, deblock in enumerate(self.deblocks)] if len(ups) > 1: out = torch.cat(ups, dim=1) else: out = ups[0] return [out] @NECKS.register_module class SECONDFusionFPN(SECONDFPN): """Compare with RPN, RPNV2 support arbitrary number of stage. """ def __init__(self, use_norm=True, in_channels=[128, 128, 256], upsample_strides=[1, 2, 4], num_upsample_filters=[256, 256, 256], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), down_sample_rate=[40, 8, 8], fusion_layer=None, cat_points=False): super(SECONDFusionFPN, self).__init__( use_norm, in_channels, upsample_strides, num_upsample_filters, norm_cfg, ) self.fusion_layer = None if fusion_layer is not None: self.fusion_layer = builder.build_fusion_layer(fusion_layer) self.cat_points = cat_points self.down_sample_rate = down_sample_rate def forward(self, x, coors=None, points=None, img_feats=None, img_meta=None): assert len(x) == len(self.in_channels) ups = [deblock(x[i]) for i, deblock in enumerate(self.deblocks)] if len(ups) > 1: out = torch.cat(ups, dim=1) else: out = ups[0] if (self.fusion_layer is not None and img_feats is not None): downsample_pts_coors = torch.zeros_like(coors) downsample_pts_coors[:, 0] = coors[:, 0] downsample_pts_coors[:, 1] = ( coors[:, 1] / self.down_sample_rate[0]) downsample_pts_coors[:, 2] = ( coors[:, 2] / self.down_sample_rate[1]) downsample_pts_coors[:, 3] = ( coors[:, 3] / self.down_sample_rate[2]) # fusion for each point out = self.fusion_layer(img_feats, points, out, downsample_pts_coors, img_meta) return [out]