# Tutorial 2: Adding New Dataset ## Customize datasets by reorganizing data ### Reorganize dataset to existing format The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC). The annotation json files in COCO format has the following necessary keys: ```python 'images': [ { 'file_name': 'COCO_val2014_000000001268.jpg', 'height': 427, 'width': 640, 'id': 1268 }, ... ], 'annotations': [ { 'segmentation': [[192.81, 247.09, ... 219.03, 249.06]], # if you have mask labels 'area': 1035.749, 'iscrowd': 0, 'image_id': 1268, 'bbox': [192.81, 224.8, 74.73, 33.43], 'category_id': 16, 'id': 42986 }, ... ], 'categories': [ {'id': 0, 'name': 'car'}, ] ``` There are three necessary keys in the json file: - `images`: contains a list of images with theire informations like `file_name`, `height`, `width`, and `id`. - `annotations`: contains the list of instance annotations. - `categories`: contains the list of categories names and their ID. After the data pre-processing, the users need to further modify the config files to use the dataset. Here we show an example of using a custom dataset of 5 classes, assuming it is also in COCO format. In `configs/my_custom_config.py`: ```python ... # dataset settings dataset_type = 'CocoDataset' classes = ('a', 'b', 'c', 'd', 'e') ... data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, classes=classes, ann_file='path/to/your/train/data', ...), val=dict( type=dataset_type, classes=classes, ann_file='path/to/your/val/data', ...), test=dict( type=dataset_type, classes=classes, ann_file='path/to/your/test/data', ...)) ... ``` We use this way to support CityScapes dataset. The script is in [cityscapes.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/convert_datasets/cityscapes.py) and we also provide the finetuning [configs](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes). ### Reorganize dataset to middle format It is also fine if you do not want to convert the annotation format to COCO or PASCAL format. Actually, we define a simple annotation format and all existing datasets are processed to be compatible with it, either online or offline. The annotation of a dataset is a list of dict, each dict corresponds to an image. There are 3 field `filename` (relative path), `width`, `height` for testing, and an additional field `ann` for training. `ann` is also a dict containing at least 2 fields: `bboxes` and `labels`, both of which are numpy arrays. Some datasets may provide annotations like crowd/difficult/ignored bboxes, we use `bboxes_ignore` and `labels_ignore` to cover them. Here is an example. ``` [ { 'filename': 'a.jpg', 'width': 1280, 'height': 720, 'ann': { 'bboxes': (n, 4), 'labels': (n, ), 'bboxes_ignore': (k, 4), 'labels_ignore': (k, ) (optional field) } }, ... ] ``` There are two ways to work with custom datasets. - online conversion You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`, like [CocoDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py) and [VOCDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/voc.py). - offline conversion You can convert the annotation format to the expected format above and save it to a pickle or json file, like [pascal_voc.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/convert_datasets/pascal_voc.py). Then you can simply use `CustomDataset`. ### An example of customized dataset Assume the annotation is in a new format in text files. The bounding boxes annotations are stored in text file `annotation.txt` as the following ``` # 000001.jpg 1280 720 2 10 20 40 60 1 20 40 50 60 2 # 000002.jpg 1280 720 3 50 20 40 60 2 20 40 30 45 2 30 40 50 60 3 ``` We can create a new dataset in `mmdet/datasets/my_dataset.py` to load the data. ```python import mmcv import numpy as np from .builder import DATASETS from .custom import CustomDataset @DATASETS.register_module() class MyDataset(CustomDataset): CLASSES = ('person', 'bicycle', 'car', 'motorcycle') def load_annotations(self, ann_file): ann_list = mmcv.list_from_file(ann_file) data_infos = [] for i, ann_line in enumerate(ann_list): if ann_line != '#': continue img_shape = ann_list[i + 2].split(' ') width = int(img_shape[0]) height = int(img_shape[1]) bbox_number = int(ann_list[i + 3]) anns = ann_line.split(' ') bboxes = [] labels = [] for anns in ann_list[i + 4:i + 4 + bbox_number]: bboxes.append([float(ann) for ann in anns[:4]]) labels.append(int(anns[4])) data_infos.append( dict( filename=ann_list[i + 1], width=width, height=height, ann=dict( bboxes=np.array(bboxes).astype(np.float32), labels=np.array(labels).astype(np.int64)) )) return data_infos def get_ann_info(self, idx): return self.data_infos[idx]['ann'] ``` Then in the config, to use `MyDataset` you can modify the config as the following ```python dataset_A_train = dict( type='MyDataset', ann_file = 'image_list.txt', pipeline=train_pipeline ) ``` ## Customize datasets by mixing dataset MMDetection also supports to mix dataset for training. Currently it supports to concat and repeat datasets. ### Repeat dataset We use `RepeatDataset` as wrapper to repeat the dataset. For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following ```python dataset_A_train = dict( type='RepeatDataset', times=N, dataset=dict( # This is the original config of Dataset_A type='Dataset_A', ... pipeline=train_pipeline ) ) ``` ### Class balanced dataset We use `ClassBalancedDataset` as wrapper to repeat the dataset based on category frequency. The dataset to repeat needs to instantiate function `self.get_cat_ids(idx)` to support `ClassBalancedDataset`. For example, to repeat `Dataset_A` with `oversample_thr=1e-3`, the config looks like the following ```python dataset_A_train = dict( type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( # This is the original config of Dataset_A type='Dataset_A', ... pipeline=train_pipeline ) ) ``` You may refer to [source code](../../mmdet/datasets/dataset_wrappers.py) for details. ### Concatenate dataset There two ways to concatenate the dataset. 1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following. ```python dataset_A_train = dict( type='Dataset_A', ann_file = ['anno_file_1', 'anno_file_2'], pipeline=train_pipeline ) ``` 2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following. ```python dataset_A_train = dict() dataset_B_train = dict() data = dict( imgs_per_gpu=2, workers_per_gpu=2, train = [ dataset_A_train, dataset_B_train ], val = dataset_A_val, test = dataset_A_test ) ``` A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following. ```python dataset_A_train = dict( type='RepeatDataset', times=N, dataset=dict( type='Dataset_A', ... pipeline=train_pipeline ) ) dataset_A_val = dict( ... pipeline=test_pipeline ) dataset_A_test = dict( ... pipeline=test_pipeline ) dataset_B_train = dict( type='RepeatDataset', times=M, dataset=dict( type='Dataset_B', ... pipeline=train_pipeline ) ) data = dict( imgs_per_gpu=2, workers_per_gpu=2, train = [ dataset_A_train, dataset_B_train ], val = dataset_A_val, test = dataset_A_test ) ``` ### Modify classes of existing dataset With existing dataset types, we can modify the class names of them to train subset of the dataset. For example, if you want to train only three classes of the current dataset, you can modify the classes of dataset. The dataset will subtract subset of the data which contains at least one class in the `classes`. ```python classes = ('person', 'bicycle', 'car') data = dict( train=dict(classes=classes), val=dict(classes=classes), test=dict(classes=classes)) ``` MMDetection V2.0 also supports to read the classes from a file, which is common in real applications. For example, assume the `classes.txt` contains the name of classes as the following. ``` person bicycle car ``` Users can set the classes as a file path, the dataset will load it and convert it to a list automatically. ```python classes = 'path/to/classes.txt' data = dict( train=dict(classes=classes), val=dict(classes=classes), test=dict(classes=classes)) ```