import pytest import torch from mmdet3d.core.bbox.assigners import MaxIoUAssigner from mmdet3d.core.bbox.samplers import IoUNegPiecewiseSampler def test_iou_piecewise_sampler(): if not torch.cuda.is_available(): pytest.skip() assigner = MaxIoUAssigner( pos_iou_thr=0.55, neg_iou_thr=0.55, min_pos_iou=0.55, ignore_iof_thr=-1, iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar')) bboxes = torch.tensor( [[32, 32, 16, 8, 38, 42, -0.3], [32, 32, 16, 8, 38, 42, -0.3], [32, 32, 16, 8, 38, 42, -0.3], [32, 32, 16, 8, 38, 42, -0.3], [0, 0, 0, 10, 10, 10, 0.2], [10, 10, 10, 20, 20, 15, 0.6], [5, 5, 5, 15, 15, 15, 0.7], [5, 5, 5, 15, 15, 15, 0.7], [5, 5, 5, 15, 15, 15, 0.7], [32, 32, 16, 8, 38, 42, -0.3], [32, 32, 16, 8, 38, 42, -0.3], [32, 32, 16, 8, 38, 42, -0.3]], dtype=torch.float32).cuda() gt_bboxes = torch.tensor( [[0, 0, 0, 10, 10, 9, 0.2], [5, 10, 10, 20, 20, 15, 0.6]], dtype=torch.float32).cuda() gt_labels = torch.tensor([1, 1], dtype=torch.int64).cuda() assign_result = assigner.assign(bboxes, gt_bboxes, gt_labels=gt_labels) sampler = IoUNegPiecewiseSampler( num=10, pos_fraction=0.55, neg_piece_fractions=[0.8, 0.2], neg_iou_piece_thrs=[0.55, 0.1], neg_pos_ub=-1, add_gt_as_proposals=False) sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) assert sample_result.pos_inds == 4 assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)