from mmdet.models.detectors import BaseDetector class Base3DDetector(BaseDetector): """Base class for detectors""" def forward_test(self, points, img_metas, img=None, **kwargs): """ Args: points (list[torch.Tensor]): the outer list indicates test-time augmentations and inner torch.Tensor should have a shape NxC, which contains all points in the batch. img_metas (list[list[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch img (list[torch.Tensor], optional): the outer list indicates test-time augmentations and inner torch.Tensor should have a shape NxCxHxW, which contains all images in the batch. Defaults to None. """ for var, name in [(points, 'points'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError('{} must be a list, but got {}'.format( name, type(var))) num_augs = len(points) if num_augs != len(img_metas): raise ValueError( 'num of augmentations ({}) != num of image meta ({})'.format( len(points), len(img_metas))) # TODO: remove the restriction of imgs_per_gpu == 1 when prepared samples_per_gpu = len(points[0]) assert samples_per_gpu == 1 if num_augs == 1: img = [img] if img is None else img return self.simple_test(points[0], img_metas[0], img[0], **kwargs) else: return self.aug_test(points, img_metas, img, **kwargs) def forward(self, return_loss=True, **kwargs): """ Calls either forward_train or forward_test depending on whether return_loss=True. Note this setting will change the expected inputs. When `return_loss=True`, img and img_metas are single-nested (i.e. torch.Tensor and list[dict]), and when `resturn_loss=False`, img and img_metas should be double nested (i.e. list[torch.Tensor], list[list[dict]]), with the outer list indicating test time augmentations. """ if return_loss: return self.forward_train(**kwargs) else: return self.forward_test(**kwargs)