# Copyright (c) OpenMMLab. All rights reserved. import tempfile from os import path as osp from typing import Dict, List, Optional, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config, load from mmengine.logging import MMLogger, print_log from mmdet3d.models.layers import box3d_multiclass_nms from mmdet3d.registry import METRICS from mmdet3d.structures import (Box3DMode, CameraInstance3DBoxes, LiDARInstance3DBoxes, bbox3d2result, points_cam2img, xywhr2xyxyr) from .kitti_metric import KittiMetric @METRICS.register_module() class WaymoMetric(KittiMetric): """Waymo evaluation metric. Args: ann_file (str): The path of the annotation file in kitti format. waymo_bin_file (str): The path of the annotation file in waymo format. data_root (str): Path of dataset root. Used for storing waymo evaluation programs. split (str): The split of the evaluation set. Defaults to 'training'. metric (str or List[str]): Metrics to be evaluated. Defaults to 'mAP'. pcd_limit_range (List[float]): The range of point cloud used to filter invalid predicted boxes. Defaults to [-85, -85, -5, 85, 85, 5]. convert_kitti_format (bool): Whether to convert the results to kitti format. Now, in order to be compatible with camera-based methods, defaults to True. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. format_only (bool): Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False. pklfile_prefix (str, optional): The prefix of pkl files, including the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Defaults to None. submission_prefix (str, optional): The prefix of submission data. If not specified, the submission data will not be generated. Defaults to None. load_type (str): Type of loading mode during training. - 'frame_based': Load all of the instances in the frame. - 'mv_image_based': Load all of the instances in the frame and need to convert to the FOV-based data type to support image-based detector. - 'fov_image_based': Only load the instances inside the default cam, and need to convert to the FOV-based data type to support image-based detector. default_cam_key (str): The default camera for lidar to camera conversion. By default, KITTI: 'CAM2', Waymo: 'CAM_FRONT'. Defaults to 'CAM_FRONT'. use_pred_sample_idx (bool): In formating results, use the sample index from the prediction or from the load annotations. By default, KITTI: True, Waymo: False, Waymo has a conversion process, which needs to use the sample idx from load annotation. Defaults to False. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. file_client_args (dict): File client for reading gt in waymo format. Defaults to ``dict(backend='disk')``. idx2metainfo (str, optional): The file path of the metainfo in waymo. It stores the mapping from sample_idx to metainfo. The metainfo must contain the keys: 'idx2contextname' and 'idx2timestamp'. Defaults to None. """ num_cams = 5 def __init__(self, ann_file: str, waymo_bin_file: str, data_root: str, split: str = 'training', metric: Union[str, List[str]] = 'mAP', pcd_limit_range: List[float] = [-85, -85, -5, 85, 85, 5], convert_kitti_format: bool = True, prefix: Optional[str] = None, format_only: bool = False, pklfile_prefix: Optional[str] = None, submission_prefix: Optional[str] = None, load_type: str = 'frame_based', default_cam_key: str = 'CAM_FRONT', use_pred_sample_idx: bool = False, collect_device: str = 'cpu', file_client_args: dict = dict(backend='disk'), idx2metainfo: Optional[str] = None) -> None: self.waymo_bin_file = waymo_bin_file self.data_root = data_root self.split = split self.load_type = load_type self.use_pred_sample_idx = use_pred_sample_idx self.convert_kitti_format = convert_kitti_format if idx2metainfo is not None: self.idx2metainfo = mmengine.load(idx2metainfo) else: self.idx2metainfo = None super(WaymoMetric, self).__init__( ann_file=ann_file, metric=metric, pcd_limit_range=pcd_limit_range, prefix=prefix, pklfile_prefix=pklfile_prefix, submission_prefix=submission_prefix, default_cam_key=default_cam_key, collect_device=collect_device, file_client_args=file_client_args) self.format_only = format_only if self.format_only: assert pklfile_prefix is not None, 'pklfile_prefix must be ' 'not None when format_only is True, otherwise the result files ' 'will be saved to a temp directory which will be cleaned up at ' 'the end.' self.default_prefix = 'Waymo metric' def compute_metrics(self, results: List[dict]) -> Dict[str, float]: """Compute the metrics from processed results. Args: results (List[dict]): The processed results of the whole dataset. Returns: Dict[str, float]: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ logger: MMLogger = MMLogger.get_current_instance() self.classes = self.dataset_meta['classes'] # load annotations self.data_infos = load(self.ann_file)['data_list'] assert len(results) == len(self.data_infos), \ 'invalid list length of network outputs' # different from kitti, waymo do not need to convert the ann file # handle the mv_image_based load_mode if self.load_type == 'mv_image_based': new_data_infos = [] for info in self.data_infos: height = info['images'][self.default_cam_key]['height'] width = info['images'][self.default_cam_key]['width'] for (cam_key, img_info) in info['images'].items(): camera_info = dict() camera_info['images'] = dict() camera_info['images'][cam_key] = img_info # TODO remove the check by updating the data info; if 'height' not in img_info: img_info['height'] = height img_info['width'] = width if 'cam_instances' in info \ and cam_key in info['cam_instances']: camera_info['instances'] = info['cam_instances'][ cam_key] else: camera_info['instances'] = [] camera_info['ego2global'] = info['ego2global'] if 'image_sweeps' in info: camera_info['image_sweeps'] = info['image_sweeps'] # TODO check if need to modify the sample idx # TODO check when will use it except for evaluation. camera_info['sample_idx'] = info['sample_idx'] new_data_infos.append(camera_info) self.data_infos = new_data_infos if self.pklfile_prefix is None: eval_tmp_dir = tempfile.TemporaryDirectory() pklfile_prefix = osp.join(eval_tmp_dir.name, 'results') else: eval_tmp_dir = None pklfile_prefix = self.pklfile_prefix result_dict, tmp_dir = self.format_results( results, pklfile_prefix=pklfile_prefix, submission_prefix=self.submission_prefix, classes=self.classes) metric_dict = {} if self.format_only: logger.info('results are saved in ' f'{osp.dirname(self.pklfile_prefix)}') return metric_dict for metric in self.metrics: ap_dict = self.waymo_evaluate( pklfile_prefix, metric=metric, logger=logger) metric_dict.update(ap_dict) if eval_tmp_dir is not None: eval_tmp_dir.cleanup() if tmp_dir is not None: tmp_dir.cleanup() return metric_dict def waymo_evaluate(self, pklfile_prefix: str, metric: Optional[str] = None, logger: Optional[MMLogger] = None) -> Dict[str, float]: """Evaluation in Waymo protocol. Args: pklfile_prefix (str): The location that stored the prediction results. metric (str, optional): Metric to be evaluated. Defaults to None. logger (MMLogger, optional): Logger used for printing related information during evaluation. Defaults to None. Returns: Dict[str, float]: Results of each evaluation metric. """ import subprocess if metric == 'mAP': eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \ f'compute_detection_metrics_main {pklfile_prefix}.bin ' + \ f'{self.waymo_bin_file}' print(eval_str) ret_bytes = subprocess.check_output(eval_str, shell=True) ret_texts = ret_bytes.decode('utf-8') print_log(ret_texts, logger=logger) ap_dict = { 'Vehicle/L1 mAP': 0, 'Vehicle/L1 mAPH': 0, 'Vehicle/L2 mAP': 0, 'Vehicle/L2 mAPH': 0, 'Pedestrian/L1 mAP': 0, 'Pedestrian/L1 mAPH': 0, 'Pedestrian/L2 mAP': 0, 'Pedestrian/L2 mAPH': 0, 'Sign/L1 mAP': 0, 'Sign/L1 mAPH': 0, 'Sign/L2 mAP': 0, 'Sign/L2 mAPH': 0, 'Cyclist/L1 mAP': 0, 'Cyclist/L1 mAPH': 0, 'Cyclist/L2 mAP': 0, 'Cyclist/L2 mAPH': 0, 'Overall/L1 mAP': 0, 'Overall/L1 mAPH': 0, 'Overall/L2 mAP': 0, 'Overall/L2 mAPH': 0 } mAP_splits = ret_texts.split('mAP ') mAPH_splits = ret_texts.split('mAPH ') for idx, key in enumerate(ap_dict.keys()): split_idx = int(idx / 2) + 1 if idx % 2 == 0: # mAP ap_dict[key] = float(mAP_splits[split_idx].split(']')[0]) else: # mAPH ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0]) ap_dict['Overall/L1 mAP'] = \ (ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] + ap_dict['Cyclist/L1 mAP']) / 3 ap_dict['Overall/L1 mAPH'] = \ (ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] + ap_dict['Cyclist/L1 mAPH']) / 3 ap_dict['Overall/L2 mAP'] = \ (ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] + ap_dict['Cyclist/L2 mAP']) / 3 ap_dict['Overall/L2 mAPH'] = \ (ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] + ap_dict['Cyclist/L2 mAPH']) / 3 elif metric == 'LET_mAP': eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \ f'compute_detection_let_metrics_main {pklfile_prefix}.bin ' + \ f'{self.waymo_bin_file}' print(eval_str) ret_bytes = subprocess.check_output(eval_str, shell=True) ret_texts = ret_bytes.decode('utf-8') print_log(ret_texts, logger=logger) ap_dict = { 'Vehicle mAPL': 0, 'Vehicle mAP': 0, 'Vehicle mAPH': 0, 'Pedestrian mAPL': 0, 'Pedestrian mAP': 0, 'Pedestrian mAPH': 0, 'Sign mAPL': 0, 'Sign mAP': 0, 'Sign mAPH': 0, 'Cyclist mAPL': 0, 'Cyclist mAP': 0, 'Cyclist mAPH': 0, 'Overall mAPL': 0, 'Overall mAP': 0, 'Overall mAPH': 0 } mAPL_splits = ret_texts.split('mAPL ') mAP_splits = ret_texts.split('mAP ') mAPH_splits = ret_texts.split('mAPH ') for idx, key in enumerate(ap_dict.keys()): split_idx = int(idx / 3) + 1 if idx % 3 == 0: # mAPL ap_dict[key] = float(mAPL_splits[split_idx].split(']')[0]) elif idx % 3 == 1: # mAP ap_dict[key] = float(mAP_splits[split_idx].split(']')[0]) else: # mAPH ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0]) ap_dict['Overall mAPL'] = \ (ap_dict['Vehicle mAPL'] + ap_dict['Pedestrian mAPL'] + ap_dict['Cyclist mAPL']) / 3 ap_dict['Overall mAP'] = \ (ap_dict['Vehicle mAP'] + ap_dict['Pedestrian mAP'] + ap_dict['Cyclist mAP']) / 3 ap_dict['Overall mAPH'] = \ (ap_dict['Vehicle mAPH'] + ap_dict['Pedestrian mAPH'] + ap_dict['Cyclist mAPH']) / 3 return ap_dict def format_results( self, results: List[dict], pklfile_prefix: Optional[str] = None, submission_prefix: Optional[str] = None, classes: Optional[List[str]] = None ) -> Tuple[dict, Union[tempfile.TemporaryDirectory, None]]: """Format the results to bin file. Args: results (List[dict]): Testing results of the dataset. pklfile_prefix (str, optional): The prefix of pkl files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Defaults to None. submission_prefix (str, optional): The prefix of submitted files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Defaults to None. classes (List[str], optional): A list of class name. Defaults to None. Returns: tuple: (result_dict, tmp_dir), result_dict is a dict containing the formatted result, tmp_dir is the temporal directory created for saving json files when jsonfile_prefix is not specified. """ waymo_save_tmp_dir = tempfile.TemporaryDirectory() waymo_results_save_dir = waymo_save_tmp_dir.name waymo_results_final_path = f'{pklfile_prefix}.bin' if self.convert_kitti_format: results_kitti_format, tmp_dir = super().format_results( results, pklfile_prefix, submission_prefix, classes) final_results = results_kitti_format['pred_instances_3d'] else: final_results = results for i, res in enumerate(final_results): # Actually, `sample_idx` here is the filename without suffix. # It's for identitying the sample in formating. res['sample_idx'] = self.data_infos[i]['sample_idx'] res['pred_instances_3d']['bboxes_3d'].limit_yaw( offset=0.5, period=np.pi * 2) waymo_root = self.data_root if self.split == 'training': waymo_tfrecords_dir = osp.join(waymo_root, 'validation') prefix = '1' elif self.split == 'testing': waymo_tfrecords_dir = osp.join(waymo_root, 'testing') prefix = '2' else: raise ValueError('Not supported split value.') from ..functional.waymo_utils.prediction_to_waymo import \ Prediction2Waymo converter = Prediction2Waymo( final_results, waymo_tfrecords_dir, waymo_results_save_dir, waymo_results_final_path, prefix, classes, file_client_args=self.file_client_args, from_kitti_format=self.convert_kitti_format, idx2metainfo=self.idx2metainfo) converter.convert() waymo_save_tmp_dir.cleanup() return final_results, waymo_save_tmp_dir def merge_multi_view_boxes(self, box_dict_per_frame: List[dict], cam0_info: dict) -> dict: """Merge bounding boxes predicted from multi-view images. Args: box_dict_per_frame (List[dict]): The results of prediction for each camera. cam0_info (dict): Store the sample idx for the given frame. Returns: dict: Merged results. """ box_dict = dict() # convert list[dict] to dict[list] for key in box_dict_per_frame[0].keys(): box_dict[key] = list() for cam_idx in range(self.num_cams): box_dict[key].append(box_dict_per_frame[cam_idx][key]) # merge each elements box_dict['sample_idx'] = cam0_info['image_id'] for key in ['bbox', 'box3d_lidar', 'scores', 'label_preds']: box_dict[key] = np.concatenate(box_dict[key]) # apply nms to box3d_lidar (box3d_camera are in different systems) # TODO: move this global setting into config nms_cfg = dict( use_rotate_nms=True, nms_across_levels=False, nms_pre=500, nms_thr=0.05, score_thr=0.001, min_bbox_size=0, max_per_frame=100) nms_cfg = Config(nms_cfg) lidar_boxes3d = LiDARInstance3DBoxes( torch.from_numpy(box_dict['box3d_lidar']).cuda()) scores = torch.from_numpy(box_dict['scores']).cuda() labels = torch.from_numpy(box_dict['label_preds']).long().cuda() nms_scores = scores.new_zeros(scores.shape[0], len(self.classes) + 1) indices = labels.new_tensor(list(range(scores.shape[0]))) nms_scores[indices, labels] = scores lidar_boxes3d_for_nms = xywhr2xyxyr(lidar_boxes3d.bev) boxes3d = lidar_boxes3d.tensor # generate attr scores from attr labels boxes3d, scores, labels = box3d_multiclass_nms( boxes3d, lidar_boxes3d_for_nms, nms_scores, nms_cfg.score_thr, nms_cfg.max_per_frame, nms_cfg) lidar_boxes3d = LiDARInstance3DBoxes(boxes3d) det = bbox3d2result(lidar_boxes3d, scores, labels) box_preds_lidar = det['bboxes_3d'] scores = det['scores_3d'] labels = det['labels_3d'] # box_preds_camera is in the cam0 system lidar2cam = cam0_info['images'][self.default_cam_key]['lidar2img'] lidar2cam = np.array(lidar2cam).astype(np.float32) box_preds_camera = box_preds_lidar.convert_to( Box3DMode.CAM, lidar2cam, correct_yaw=True) # Note: bbox is meaningless in final evaluation, set to 0 merged_box_dict = dict( bbox=np.zeros([box_preds_lidar.tensor.shape[0], 4]), box3d_camera=box_preds_camera.tensor.numpy(), box3d_lidar=box_preds_lidar.tensor.numpy(), scores=scores.numpy(), label_preds=labels.numpy(), sample_idx=box_dict['sample_idx'], ) return merged_box_dict def bbox2result_kitti( self, net_outputs: List[dict], sample_idx_list: List[int], class_names: List[str], pklfile_prefix: Optional[str] = None, submission_prefix: Optional[str] = None) -> List[dict]: """Convert 3D detection results to kitti format for evaluation and test submission. Args: net_outputs (List[dict]): List of dict storing the inferenced bounding boxes and scores. sample_idx_list (List[int]): List of input sample idx. class_names (List[str]): A list of class names. pklfile_prefix (str, optional): The prefix of pkl file. Defaults to None. submission_prefix (str, optional): The prefix of submission file. Defaults to None. Returns: List[dict]: A list of dictionaries with the kitti format. """ if submission_prefix is not None: mmengine.mkdir_or_exist(submission_prefix) det_annos = [] print('\nConverting prediction to KITTI format') for idx, pred_dicts in enumerate( mmengine.track_iter_progress(net_outputs)): sample_idx = sample_idx_list[idx] info = self.data_infos[sample_idx] if self.load_type == 'mv_image_based': if idx % self.num_cams == 0: box_dict_per_frame = [] cam0_key = list(info['images'].keys())[0] cam0_info = info # Here in mono3d, we use the 'CAM_FRONT' "the first # index in the camera" as the default image shape. # If you want to another camera, please modify it. image_shape = (info['images'][cam0_key]['height'], info['images'][cam0_key]['width']) box_dict = self.convert_valid_bboxes(pred_dicts, info) else: box_dict = self.convert_valid_bboxes(pred_dicts, info) # Here default used 'CAM_FRONT' to compute metric. # If you want to use another camera, please modify it. image_shape = (info['images'][self.default_cam_key]['height'], info['images'][self.default_cam_key]['width']) if self.load_type == 'mv_image_based': box_dict_per_frame.append(box_dict) if (idx + 1) % self.num_cams != 0: continue box_dict = self.merge_multi_view_boxes(box_dict_per_frame, cam0_info) anno = { 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [], 'score': [] } if len(box_dict['bbox']) > 0: box_2d_preds = box_dict['bbox'] box_preds = box_dict['box3d_camera'] scores = box_dict['scores'] box_preds_lidar = box_dict['box3d_lidar'] label_preds = box_dict['label_preds'] for box, box_lidar, bbox, score, label in zip( box_preds, box_preds_lidar, box_2d_preds, scores, label_preds): bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) bbox[:2] = np.maximum(bbox[:2], [0, 0]) anno['name'].append(class_names[int(label)]) anno['truncated'].append(0.0) anno['occluded'].append(0) anno['alpha'].append( -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6]) anno['bbox'].append(bbox) anno['dimensions'].append(box[3:6]) anno['location'].append(box[:3]) anno['rotation_y'].append(box[6]) anno['score'].append(score) anno = {k: np.stack(v) for k, v in anno.items()} else: anno = { 'name': np.array([]), 'truncated': np.array([]), 'occluded': np.array([]), 'alpha': np.array([]), 'bbox': np.zeros([0, 4]), 'dimensions': np.zeros([0, 3]), 'location': np.zeros([0, 3]), 'rotation_y': np.array([]), 'score': np.array([]), } if submission_prefix is not None: curr_file = f'{submission_prefix}/{sample_idx:06d}.txt' with open(curr_file, 'w') as f: bbox = anno['bbox'] loc = anno['location'] dims = anno['dimensions'] # lhw -> hwl for idx in range(len(bbox)): print( '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} ' '{:.4f} {:.4f} {:.4f} ' '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format( anno['name'][idx], anno['alpha'][idx], bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3], dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0], loc[idx][1], loc[idx][2], anno['rotation_y'][idx], anno['score'][idx]), file=f) if self.use_pred_sample_idx: save_sample_idx = sample_idx else: # use the sample idx in the info file # In waymo validation sample_idx in prediction is 000xxx # but in info file it is 1000xxx save_sample_idx = box_dict['sample_idx'] anno['sample_idx'] = np.array( [save_sample_idx] * len(anno['score']), dtype=np.int64) det_annos.append(anno) if pklfile_prefix is not None: if not pklfile_prefix.endswith(('.pkl', '.pickle')): out = f'{pklfile_prefix}.pkl' else: out = pklfile_prefix mmengine.dump(det_annos, out) print(f'Result is saved to {out}.') return det_annos def convert_valid_bboxes(self, box_dict: dict, info: dict) -> dict: """Convert the predicted boxes into valid ones. Should handle the load_model (frame_based, mv_image_based, fov_image_based), separately. Args: box_dict (dict): Box dictionaries to be converted. - bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bounding boxes. - scores_3d (Tensor): Scores of boxes. - labels_3d (Tensor): Class labels of boxes. info (dict): Data info. Returns: dict: Valid predicted boxes. - bbox (np.ndarray): 2D bounding boxes. - box3d_camera (np.ndarray): 3D bounding boxes in camera coordinate. - box3d_lidar (np.ndarray): 3D bounding boxes in LiDAR coordinate. - scores (np.ndarray): Scores of boxes. - label_preds (np.ndarray): Class label predictions. - sample_idx (int): Sample index. """ # TODO: refactor this function box_preds = box_dict['bboxes_3d'] scores = box_dict['scores_3d'] labels = box_dict['labels_3d'] sample_idx = info['sample_idx'] box_preds.limit_yaw(offset=0.5, period=np.pi * 2) if len(box_preds) == 0: return dict( bbox=np.zeros([0, 4]), box3d_camera=np.zeros([0, 7]), box3d_lidar=np.zeros([0, 7]), scores=np.zeros([0]), label_preds=np.zeros([0, 4]), sample_idx=sample_idx) # Here default used 'CAM_FRONT' to compute metric. If you want to # use another camera, please modify it. if self.load_type in ['frame_based', 'fov_image_based']: cam_key = self.default_cam_key elif self.load_type == 'mv_image_based': cam_key = list(info['images'].keys())[0] else: raise NotImplementedError lidar2cam = np.array(info['images'][cam_key]['lidar2cam']).astype( np.float32) P2 = np.array(info['images'][cam_key]['cam2img']).astype(np.float32) img_shape = (info['images'][cam_key]['height'], info['images'][cam_key]['width']) P2 = box_preds.tensor.new_tensor(P2) if isinstance(box_preds, LiDARInstance3DBoxes): box_preds_camera = box_preds.convert_to(Box3DMode.CAM, lidar2cam) box_preds_lidar = box_preds elif isinstance(box_preds, CameraInstance3DBoxes): box_preds_camera = box_preds box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR, np.linalg.inv(lidar2cam)) box_corners = box_preds_camera.corners box_corners_in_image = points_cam2img(box_corners, P2) # box_corners_in_image: [N, 8, 2] minxy = torch.min(box_corners_in_image, dim=1)[0] maxxy = torch.max(box_corners_in_image, dim=1)[0] box_2d_preds = torch.cat([minxy, maxxy], dim=1) # Post-processing # check box_preds_camera image_shape = box_preds.tensor.new_tensor(img_shape) valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) & (box_2d_preds[:, 1] < image_shape[0]) & (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0)) # check box_preds_lidar if self.load_type in ['frame_based']: limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range) valid_pcd_inds = ((box_preds_lidar.center > limit_range[:3]) & (box_preds_lidar.center < limit_range[3:])) valid_inds = valid_pcd_inds.all(-1) elif self.load_type in ['mv_image_based', 'fov_image_based']: valid_inds = valid_cam_inds if valid_inds.sum() > 0: return dict( bbox=box_2d_preds[valid_inds, :].numpy(), pred_box_type_3d=type(box_preds), box3d_camera=box_preds_camera[valid_inds].tensor.numpy(), box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(), scores=scores[valid_inds].numpy(), label_preds=labels[valid_inds].numpy(), sample_idx=sample_idx) else: return dict( bbox=np.zeros([0, 4]), pred_box_type_3d=type(box_preds), box3d_camera=np.zeros([0, 7]), box3d_lidar=np.zeros([0, 7]), scores=np.zeros([0]), label_preds=np.zeros([0]), sample_idx=sample_idx)