import numpy as np from os import path as osp from mmdet3d.core import show_result from mmdet3d.core.bbox import DepthInstance3DBoxes from mmdet.datasets import DATASETS from .custom_3d import Custom3DDataset @DATASETS.register_module() class ScanNetDataset(Custom3DDataset): """ScanNet Dataset. This class serves as the API for experiments on the ScanNet Dataset. Please refer to ``_for data downloading. It is recommended to symlink the dataset root to $MMDETECTION3D/data and organize them as the doc shows. Args: data_root (str): Path of dataset root. ann_file (str): Path of annotation file. pipeline (list[dict], optional): Pipeline used for data processing. Defaults to None. classes (tuple[str], optional): Classes used in the dataset. Defaults to None. modality (dict, optional): Modality to specify the sensor data used as input. Defaults to None. box_type_3d (str, optional): Type of 3D box of this dataset. Based on the `box_type_3d`, the dataset will encapsulate the box to its original format then converted them to `box_type_3d`. Defaults to 'Depth' in this dataset. Available options includes - 'LiDAR': box in LiDAR coordinates - 'Depth': box in depth coordinates, usually for indoor dataset - 'Camera': box in camera coordinates filter_empty_gt (bool, optional): Whether to filter empty GT. Defaults to True. test_mode (bool, optional): Whether the dataset is in test mode. Defaults to False. """ CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin') def __init__(self, data_root, ann_file, pipeline=None, classes=None, modality=None, box_type_3d='Depth', filter_empty_gt=True, test_mode=False): super().__init__( data_root=data_root, ann_file=ann_file, pipeline=pipeline, classes=classes, modality=modality, box_type_3d=box_type_3d, filter_empty_gt=filter_empty_gt, test_mode=test_mode) def get_ann_info(self, index): # Use index to get the annos, thus the evalhook could also use this api info = self.data_infos[index] if info['annos']['gt_num'] != 0: gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype( np.float32) # k, 6 gt_labels_3d = info['annos']['class'].astype(np.long) else: gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32) gt_labels_3d = np.zeros((0, ), dtype=np.long) # to target box structure gt_bboxes_3d = DepthInstance3DBoxes( gt_bboxes_3d, box_dim=gt_bboxes_3d.shape[-1], with_yaw=False, origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) pts_instance_mask_path = osp.join(self.data_root, info['pts_instance_mask_path']) pts_semantic_mask_path = osp.join(self.data_root, info['pts_semantic_mask_path']) anns_results = dict( gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d, pts_instance_mask_path=pts_instance_mask_path, pts_semantic_mask_path=pts_semantic_mask_path) return anns_results def show(self, results, out_dir): assert out_dir is not None, 'Expect out_dir, got none.' for i, result in enumerate(results): data_info = self.data_infos[i] pts_path = data_info['pts_path'] file_name = osp.split(pts_path)[-1].split('.')[0] points = np.fromfile( osp.join(self.data_root, pts_path), dtype=np.float32).reshape(-1, 6) gt_bboxes = np.pad(data_info['annos']['gt_boxes_upright_depth'], ((0, 0), (0, 1)), 'constant') pred_bboxes = result['boxes_3d'].tensor.numpy() pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2 show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)