import numpy as np import torch def limit_period(val, offset=0.5, period=np.pi): """Limit the value into a period for periodic function. Args: val (torch.Tensor): The value to be converted. offset (float, optional): Offset to set the value range. Defaults to 0.5. period ([type], optional): Period of the value. Defaults to np.pi. Returns: torch.Tensor: value in the range of [-offset * period, (1-offset) * period] """ return val - torch.floor(val / period + offset) * period def rotation_3d_in_axis(points, angles, axis=0): """Rotate points by angles according to axis. Args: points (torch.Tensor): Points of shape (N, M, 3). angles (torch.Tensor): Vector of angles in shape (N,) axis (int, optional): The axis to be rotated. Defaults to 0. Raises: ValueError: when the axis is not in range [0, 1, 2], it will raise value error. Returns: torch.Tensor: rotated points in shape (N, M, 3) """ rot_sin = torch.sin(angles) rot_cos = torch.cos(angles) ones = torch.ones_like(rot_cos) zeros = torch.zeros_like(rot_cos) if axis == 1: rot_mat_T = torch.stack([ torch.stack([rot_cos, zeros, -rot_sin]), torch.stack([zeros, ones, zeros]), torch.stack([rot_sin, zeros, rot_cos]) ]) elif axis == 2 or axis == -1: rot_mat_T = torch.stack([ torch.stack([rot_cos, -rot_sin, zeros]), torch.stack([rot_sin, rot_cos, zeros]), torch.stack([zeros, zeros, ones]) ]) elif axis == 0: rot_mat_T = torch.stack([ torch.stack([zeros, rot_cos, -rot_sin]), torch.stack([zeros, rot_sin, rot_cos]), torch.stack([ones, zeros, zeros]) ]) else: raise ValueError(f'axis should in range [0, 1, 2], got {axis}') return torch.einsum('aij,jka->aik', (points, rot_mat_T)) def xywhr2xyxyr(boxes_xywhr): """Convert a rotated boxes in XYWHR format to XYXYR format. Args: boxes_xywhr (torch.Tensor): Rotated boxes in XYWHR format. Returns: torch.Tensor: Converted boxes in XYXYR format. """ boxes = torch.zeros_like(boxes_xywhr) half_w = boxes_xywhr[:, 2] / 2 half_h = boxes_xywhr[:, 3] / 2 boxes[:, 0] = boxes_xywhr[:, 0] - half_w boxes[:, 1] = boxes_xywhr[:, 1] - half_h boxes[:, 2] = boxes_xywhr[:, 0] + half_w boxes[:, 3] = boxes_xywhr[:, 1] + half_h boxes[:, 4] = boxes_xywhr[:, 4] return boxes def get_box_type(box_type): """Get the type and mode of box structure. Args: box_type (str): Indicate the type of box structure. The valid value are "LiDAR", "Camera", or "Depth". Returns: tuple: box type and box mode. """ from .box_3d_mode import (Box3DMode, CameraInstance3DBoxes, DepthInstance3DBoxes, LiDARInstance3DBoxes) box_type_lower = box_type.lower() if box_type_lower == 'lidar': box_type_3d = LiDARInstance3DBoxes box_mode_3d = Box3DMode.LIDAR elif box_type_lower == 'camera': box_type_3d = CameraInstance3DBoxes box_mode_3d = Box3DMode.CAM elif box_type_lower == 'depth': box_type_3d = DepthInstance3DBoxes box_mode_3d = Box3DMode.DEPTH else: raise ValueError('Only "box_type" of "camera", "lidar", "depth"' f' are supported, got {box_type}') return box_type_3d, box_mode_3d def points_cam2img(points_3d, proj_mat): """Project points from camera coordicates to image coordinates. Args: points_3d (torch.Tensor): Points in shape (N, 3) proj_mat (torch.Tensor): Transformation matrix between coordinates. Returns: torch.Tensor: Points in image coordinates with shape [N, 2]. """ points_num = list(points_3d.shape)[:-1] points_shape = np.concatenate([points_num, [1]], axis=0).tolist() # previous implementation use new_zeros, new_one yeilds better results points_4 = torch.cat( [points_3d, points_3d.new_ones(*points_shape)], dim=-1) # point_2d = points_4 @ tf.transpose(proj_mat, [1, 0]) point_2d = torch.matmul(points_4, proj_mat.t()) point_2d_res = point_2d[..., :2] / point_2d[..., 2:3] return point_2d_res