import pytest import torch from mmcv.parallel import MMDataParallel from os.path import dirname, exists, join from mmdet3d.apis import inference_detector, init_detector, single_gpu_test from mmdet3d.datasets import build_dataloader, build_dataset from mmdet3d.models import build_detector def _get_config_directory(): """Find the predefined detector config directory.""" try: # Assume we are running in the source mmdetection3d repo repo_dpath = dirname(dirname(dirname(__file__))) except NameError: # For IPython development when this __file__ is not defined import mmdet3d repo_dpath = dirname(dirname(mmdet3d.__file__)) config_dpath = join(repo_dpath, 'configs') if not exists(config_dpath): raise Exception('Cannot find config path') return config_dpath def _get_config_module(fname): """Load a configuration as a python module.""" from mmcv import Config config_dpath = _get_config_directory() config_fpath = join(config_dpath, fname) config_mod = Config.fromfile(config_fpath) return config_mod def test_inference_detector(): pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin' detector_cfg = 'configs/pointpillars/hv_pointpillars_secfpn_' \ '6x8_160e_kitti-3d-3class.py' detector = init_detector(detector_cfg, device='cpu') results = inference_detector(detector, pcd) bboxes_3d = results[0][0]['boxes_3d'] scores_3d = results[0][0]['scores_3d'] labels_3d = results[0][0]['labels_3d'] assert bboxes_3d.tensor.shape[0] >= 0 assert bboxes_3d.tensor.shape[1] == 7 assert scores_3d.shape[0] >= 0 assert labels_3d.shape[0] >= 0 def test_single_gpu_test(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') cfg = _get_config_module('votenet/votenet_16x8_sunrgbd-3d-10class.py') model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) dataset_cfg = cfg.data.test dataset_cfg.data_root = './tests/data/sunrgbd' dataset_cfg.ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl' dataset = build_dataset(dataset_cfg) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False) model = MMDataParallel(model, device_ids=[0]) results = single_gpu_test(model, data_loader) bboxes_3d = results[0]['boxes_3d'] scores_3d = results[0]['scores_3d'] labels_3d = results[0]['labels_3d'] assert bboxes_3d.tensor.shape[0] >= 0 assert bboxes_3d.tensor.shape[1] == 7 assert scores_3d.shape[0] >= 0 assert labels_3d.shape[0] >= 0