import numpy as np from mmdet3d.datasets import SemanticKITTIDataset def test_getitem(): np.random.seed(0) root_path = './tests/data/semantickitti/' ann_file = './tests/data/semantickitti/semantickitti_infos.pkl' class_names = ('unlabeled', 'car', 'bicycle', 'motorcycle', 'truck', 'bus', 'person', 'bicyclist', 'motorcyclist', 'road', 'parking', 'sidewalk', 'other-ground', 'building', 'fence', 'vegetation', 'trunck', 'terrian', 'pole', 'traffic-sign') pipelines = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', shift_height=True, load_dim=4, use_dim=[0, 1, 2]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True, seg_3d_dtype=np.int32), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=1.0, flip_ratio_bev_vertical=1.0), dict( type='GlobalRotScaleTrans', rot_range=[-0.087266, 0.087266], scale_ratio_range=[1.0, 1.0], shift_height=True), dict(type='DefaultFormatBundle3D', class_names=class_names), dict( type='Collect3D', keys=[ 'points', 'pts_semantic_mask', ], meta_keys=['file_name', 'sample_idx', 'pcd_rotation']), ] semantickitti_dataset = SemanticKITTIDataset(root_path, ann_file, pipelines) data = semantickitti_dataset[0] assert data['points']._data.shape[0] == data[ 'pts_semantic_mask']._data.shape[0]