import numpy as np from mmdet3d.datasets import NuScenesDataset def test_getitem(): np.random.seed(0) point_cloud_range = [-50, -50, -5, 50, 50, 3] file_client_args = dict(backend='disk') class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=2, file_client_args=file_client_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] nus_dataset = NuScenesDataset( 'tests/data/nuscenes/nus_info.pkl', pipeline, 'tests/data/nuscenes', test_mode=True) data = nus_dataset[0] assert data['img_metas'][0].data['flip'] is False assert data['img_metas'][0].data['pcd_horizontal_flip'] is False assert data['points'][0]._data.shape == (100, 4) data = nus_dataset[1] assert data['img_metas'][0].data['flip'] is False assert data['img_metas'][0].data['pcd_horizontal_flip'] is False assert data['points'][0]._data.shape == (597, 4)