# model settings _base_ = './hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py' point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] model = dict( bbox_head=dict( type='Anchor3DHead', num_classes=1, anchor_generator=dict( _delete_=True, type='AlignedAnchor3DRangeGenerator', ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]], sizes=[[3.9, 1.6, 1.56]], rotations=[0, 1.57], reshape_out=True)), # model training and testing settings train_cfg=dict( _delete_=True, assigner=dict( type='MaxIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), allowed_border=0, pos_weight=-1, debug=False)) # dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Car'] db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), sample_groups=dict(Car=15), classes=class_names) train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] data = dict( train=dict( type='RepeatDataset', times=2, dataset=dict(pipeline=train_pipeline, classes=class_names)), val=dict(pipeline=test_pipeline, classes=class_names), test=dict(pipeline=test_pipeline, classes=class_names))