### Prepare SUN RGB-D Data We follow the procedure in [votenet](https://github.com/facebookresearch/votenet/). 1. Download SUNRGBD v2 data [HERE](http://rgbd.cs.princeton.edu/data/). Then, move SUNRGBD.zip, SUNRGBDMeta2DBB_v2.mat, SUNRGBDMeta3DBB_v2.mat and SUNRGBDtoolbox.zip to the OFFICIAL_SUNRGBD folder, unzip the zip files. 2. Enter the `matlab` folder, Extract point clouds and annotations by running `extract_split.m`, `extract_rgbd_data_v2.m` and `extract_rgbd_data_v1.m`. 3. Back to this directory, prepare data by running `python sunrgbd_data.py --gen_v1_data`. 4. Enter the project root directory, Generate training data by running ```bash python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd ``` The overall process could be achieved through the following script ```bash cd matlab matlab -nosplash -nodesktop -r 'extract_split;quit;' matlab -nosplash -nodesktop -r 'extract_rgbd_data_v2;quit;' matlab -nosplash -nodesktop -r 'extract_rgbd_data_v1;quit;' cd .. python sunrgbd_data.py --gen_v1_data cd .. python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd ``` NOTE: SUNRGBDtoolbox.zip should have MD5 hash `18d22e1761d36352f37232cba102f91f` (you can check the hash with `md5 SUNRGBDtoolbox.zip` on Mac OS or `md5sum SUNRGBDtoolbox.zip` on Linux) The directory structure after pre-processing should be as below ``` sunrgbd ├── sunrgbd_utils.py ├── sunrgbd_data.py ├── README.md ├── matlab │ ├── extract_rgbd_data_v1.m │ ├── extract_rgbd_data_v2.m │ ├── extract_split.m ├── OFFICIAL_SUNRGBD │ ├── SUNRGBD │ ├── SUNRGBDMeta2DBB_v2.mat │ ├── SUNRGBDMeta3DBB_v2.mat │ ├── SUNRGBDtoolbox ├── sunrgbd_trainval │ ├── calib │ ├── image │ ├── label_v1 │ ├── train_data_idx.txt │ ├── depth │ ├── label │ ├── seg_label │ ├── val_data_idx.txt ├── sunrgbd_pc_bbox_votes_50k_v1_train ├── sunrgbd_pc_bbox_votes_50k_v1_val ├── points ├── sunrgbd_infos_train.pkl ├── sunrgbd_infos_val.pkl ```