### Prepare ScanNet Data We follow the procedure in [votenet](https://github.com/facebookresearch/votenet/). 1. Download ScanNet v2 data [HERE](https://github.com/ScanNet/ScanNet). Link or move the 'scans' folder to this level of directory. 2. In this directory, extract point clouds and annotations by running `python batch_load_scannet_data.py`. 3. Enter the project root directory, generate training data by running ```bash python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet ``` The overall process could be achieved through the following script ```bash python batch_load_scannet_data.py cd ../.. python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet ``` The directory structure after pre-processing should be as below ``` scannet ├── scannet_utils.py ├── batch_load_scannet_data.py ├── load_scannet_data.py ├── scannet_utils.py ├── README.md ├── scans ├── scannet_train_instance_data ├── points ├── instance_mask ├── semantic_mask ├── scannet_infos_train.pkl ├── scannet_infos_val.pkl ```