import argparse import time import torch from mmcv import Config from mmcv.parallel import MMDataParallel from mmcv.runner import load_checkpoint from tools.fuse_conv_bn import fuse_module from mmdet.core import wrap_fp16_model from mmdet.datasets import build_dataloader, build_dataset from mmdet.models import build_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDet benchmark a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--log-interval', default=50, help='interval of logging') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_module(model) model = MMDataParallel(model, device_ids=[0]) model.eval() # the first several iterations may be very slow so skip them num_warmup = 5 pure_inf_time = 0 # benchmark with 2000 image and take the average for i, data in enumerate(data_loader): torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, rescale=True, **data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= num_warmup: pure_inf_time += elapsed if (i + 1) % args.log_interval == 0: fps = (i + 1 - num_warmup) / pure_inf_time print(f'Done image [{i + 1:<3}/ 2000], fps: {fps:.1f} img / s') if (i + 1) == 2000: pure_inf_time += elapsed fps = (i + 1 - num_warmup) / pure_inf_time print(f'Overall fps: {fps:.1f} img / s') break if __name__ == '__main__': main()