# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import build_conv_layer, build_norm_layer from torch import nn from mmdet.models.backbones.resnet import BasicBlock, Bottleneck from .spconv import IS_SPCONV2_AVAILABLE if IS_SPCONV2_AVAILABLE: from spconv.pytorch import SparseModule, SparseSequential else: from mmcv.ops import SparseModule, SparseSequential def replace_feature(out, new_features): if 'replace_feature' in out.__dir__(): # spconv 2.x behaviour return out.replace_feature(new_features) else: out.features = new_features return out class SparseBottleneck(Bottleneck, SparseModule): """Sparse bottleneck block for PartA^2. Bottleneck block implemented with submanifold sparse convolution. Args: inplanes (int): inplanes of block. planes (int): planes of block. stride (int, optional): stride of the first block. Default: 1. downsample (Module, optional): down sample module for block. conv_cfg (dict, optional): dictionary to construct and config conv layer. Default: None. norm_cfg (dict, optional): dictionary to construct and config norm layer. Default: dict(type='BN'). """ expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, conv_cfg=None, norm_cfg=None): SparseModule.__init__(self) Bottleneck.__init__( self, inplanes, planes, stride=stride, downsample=downsample, conv_cfg=conv_cfg, norm_cfg=norm_cfg) def forward(self, x): identity = x.features out = self.conv1(x) out = replace_feature(out, self.bn1(out.features)) out = replace_feature(out, self.relu(out.features)) out = self.conv2(out) out = replace_feature(out, self.bn2(out.features)) out = replace_feature(out, self.relu(out.features)) out = self.conv3(out) out = replace_feature(out, self.bn3(out.features)) if self.downsample is not None: identity = self.downsample(x) out = replace_feature(out, out.features + identity) out = replace_feature(out, self.relu(out.features)) return out class SparseBasicBlock(BasicBlock, SparseModule): """Sparse basic block for PartA^2. Sparse basic block implemented with submanifold sparse convolution. Args: inplanes (int): inplanes of block. planes (int): planes of block. stride (int, optional): stride of the first block. Default: 1. downsample (Module, optional): down sample module for block. conv_cfg (dict, optional): dictionary to construct and config conv layer. Default: None. norm_cfg (dict, optional): dictionary to construct and config norm layer. Default: dict(type='BN'). """ expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, conv_cfg=None, norm_cfg=None): SparseModule.__init__(self) BasicBlock.__init__( self, inplanes, planes, stride=stride, downsample=downsample, conv_cfg=conv_cfg, norm_cfg=norm_cfg) def forward(self, x): identity = x.features assert x.features.dim() == 2, f'x.features.dim()={x.features.dim()}' out = self.conv1(x) out = replace_feature(out, self.norm1(out.features)) out = replace_feature(out, self.relu(out.features)) out = self.conv2(out) out = replace_feature(out, self.norm2(out.features)) if self.downsample is not None: identity = self.downsample(x) out = replace_feature(out, out.features + identity) out = replace_feature(out, self.relu(out.features)) return out def make_sparse_convmodule(in_channels, out_channels, kernel_size, indice_key, stride=1, padding=0, conv_type='SubMConv3d', norm_cfg=None, order=('conv', 'norm', 'act')): """Make sparse convolution module. Args: in_channels (int): the number of input channels out_channels (int): the number of out channels kernel_size (int|tuple(int)): kernel size of convolution indice_key (str): the indice key used for sparse tensor stride (int|tuple(int)): the stride of convolution padding (int or list[int]): the padding number of input conv_type (str): sparse conv type in spconv norm_cfg (dict[str]): config of normalization layer order (tuple[str]): The order of conv/norm/activation layers. It is a sequence of "conv", "norm" and "act". Common examples are ("conv", "norm", "act") and ("act", "conv", "norm"). Returns: spconv.SparseSequential: sparse convolution module. """ assert isinstance(order, tuple) and len(order) <= 3 assert set(order) | {'conv', 'norm', 'act'} == {'conv', 'norm', 'act'} conv_cfg = dict(type=conv_type, indice_key=indice_key) layers = list() for layer in order: if layer == 'conv': if conv_type not in [ 'SparseInverseConv3d', 'SparseInverseConv2d', 'SparseInverseConv1d' ]: layers.append( build_conv_layer( conv_cfg, in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=False)) else: layers.append( build_conv_layer( conv_cfg, in_channels, out_channels, kernel_size, bias=False)) elif layer == 'norm': layers.append(build_norm_layer(norm_cfg, out_channels)[1]) elif layer == 'act': layers.append(nn.ReLU(inplace=True)) layers = SparseSequential(*layers) return layers