# Copyright (c) OpenMMLab. All rights reserved. from os import path as osp from .builder import DATASETS from .custom_3d import Custom3DDataset @DATASETS.register_module() class SemanticKITTIDataset(Custom3DDataset): r"""SemanticKITTI Dataset. This class serves as the API for experiments on the SemanticKITTI Dataset Please refer to `_ for data downloading Args: data_root (str): Path of dataset root. ann_file (str): Path of annotation file. pipeline (list[dict], optional): Pipeline used for data processing. Defaults to None. classes (tuple[str], optional): Classes used in the dataset. Defaults to None. modality (dict, optional): Modality to specify the sensor data used as input. Defaults to None. box_type_3d (str, optional): NO 3D box for this dataset. You can choose any type Based on the `box_type_3d`, the dataset will encapsulate the box to its original format then converted them to `box_type_3d`. Defaults to 'LiDAR' in this dataset. Available options includes - 'LiDAR': Box in LiDAR coordinates. - 'Depth': Box in depth coordinates, usually for indoor dataset. - 'Camera': Box in camera coordinates. filter_empty_gt (bool, optional): Whether to filter empty GT. Defaults to True. test_mode (bool, optional): Whether the dataset is in test mode. Defaults to False. """ CLASSES = ('unlabeled', 'car', 'bicycle', 'motorcycle', 'truck', 'bus', 'person', 'bicyclist', 'motorcyclist', 'road', 'parking', 'sidewalk', 'other-ground', 'building', 'fence', 'vegetation', 'trunck', 'terrian', 'pole', 'traffic-sign') def __init__(self, data_root, ann_file, pipeline=None, classes=None, modality=None, box_type_3d='Lidar', filter_empty_gt=False, test_mode=False): super().__init__( data_root=data_root, ann_file=ann_file, pipeline=pipeline, classes=classes, modality=modality, box_type_3d=box_type_3d, filter_empty_gt=filter_empty_gt, test_mode=test_mode) def get_data_info(self, index): """Get data info according to the given index. Args: index (int): Index of the sample data to get. Returns: dict: Data information that will be passed to the data preprocessing pipelines. It includes the following keys: - sample_idx (str): Sample index. - pts_filename (str): Filename of point clouds. - file_name (str): Filename of point clouds. - ann_info (dict): Annotation info. """ info = self.data_infos[index] sample_idx = info['point_cloud']['lidar_idx'] pts_filename = osp.join(self.data_root, info['pts_path']) input_dict = dict( pts_filename=pts_filename, sample_idx=sample_idx, file_name=pts_filename) if not self.test_mode: annos = self.get_ann_info(index) input_dict['ann_info'] = annos if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any(): return None return input_dict def get_ann_info(self, index): """Get annotation info according to the given index. Args: index (int): Index of the annotation data to get. Returns: dict: annotation information consists of the following keys: - pts_semantic_mask_path (str): Path of semantic masks. """ # Use index to get the annos, thus the evalhook could also use this api info = self.data_infos[index] pts_semantic_mask_path = osp.join(self.data_root, info['pts_semantic_mask_path']) anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path) return anns_results