from typing import Dict, List, Optional import torch from torch import Tensor from mmdet3d.models import Base3DDetector from mmdet3d.registry import MODELS from mmdet3d.structures import Det3DDataSample @MODELS.register_module() class DSVT(Base3DDetector): """DSVT detector.""" def __init__(self, voxel_encoder: Optional[dict] = None, middle_encoder: Optional[dict] = None, backbone: Optional[dict] = None, neck: Optional[dict] = None, map2bev: Optional[dict] = None, bbox_head: Optional[dict] = None, train_cfg: Optional[dict] = None, test_cfg: Optional[dict] = None, init_cfg: Optional[dict] = None, data_preprocessor: Optional[dict] = None, **kwargs): super(DSVT, self).__init__( init_cfg=init_cfg, data_preprocessor=data_preprocessor, **kwargs) if voxel_encoder: self.voxel_encoder = MODELS.build(voxel_encoder) if middle_encoder: self.middle_encoder = MODELS.build(middle_encoder) if backbone: self.backbone = MODELS.build(backbone) self.map2bev = MODELS.build(map2bev) if neck is not None: self.neck = MODELS.build(neck) if bbox_head: bbox_head.update(train_cfg=train_cfg, test_cfg=test_cfg) self.bbox_head = MODELS.build(bbox_head) self.train_cfg = train_cfg self.test_cfg = test_cfg @property def with_bbox(self): """bool: Whether the detector has a 3D box head.""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_backbone(self): """bool: Whether the detector has a 3D backbone.""" return hasattr(self, 'backbone') and self.backbone is not None @property def with_voxel_encoder(self): """bool: Whether the detector has a voxel encoder.""" return hasattr(self, 'voxel_encoder') and self.voxel_encoder is not None @property def with_middle_encoder(self): """bool: Whether the detector has a middle encoder.""" return hasattr(self, 'middle_encoder') and self.middle_encoder is not None def _forward(self): pass def extract_feat(self, batch_inputs_dict: dict) -> tuple: """Extract features from images and points. Args: batch_inputs_dict (dict): Dict of batch inputs. It contains - points (List[tensor]): Point cloud of multiple inputs. - imgs (tensor): Image tensor with shape (B, C, H, W). Returns: tuple: Two elements in tuple arrange as image features and point cloud features. """ batch_out_dict = self.voxel_encoder(batch_inputs_dict) batch_out_dict = self.middle_encoder(batch_out_dict) batch_out_dict = self.map2bev(batch_out_dict) multi_feats = self.backbone(batch_out_dict['spatial_features']) feats = self.neck(multi_feats) return feats def loss(self, batch_inputs_dict: Dict[List, torch.Tensor], batch_data_samples: List[Det3DDataSample], **kwargs) -> List[Det3DDataSample]: """ Args: batch_inputs_dict (dict): The model input dict which include 'points' and `imgs` keys. - points (list[torch.Tensor]): Point cloud of each sample. - imgs (torch.Tensor): Tensor of batch images, has shape (B, C, H ,W) batch_data_samples (List[:obj:`Det3DDataSample`]): The Data Samples. It usually includes information such as `gt_instance_3d`, . Returns: dict[str, Tensor]: A dictionary of loss components. """ pts_feats = self.extract_feat(batch_inputs_dict) losses = dict() loss = self.bbox_head.loss(pts_feats, batch_data_samples) losses.update(loss) return losses def predict(self, batch_inputs_dict: Dict[str, Optional[Tensor]], batch_data_samples: List[Det3DDataSample], **kwargs) -> List[Det3DDataSample]: """Forward of testing. Args: batch_inputs_dict (dict): The model input dict which include 'points' keys. - points (list[torch.Tensor]): Point cloud of each sample. batch_data_samples (List[:obj:`Det3DDataSample`]): The Data Samples. It usually includes information such as `gt_instance_3d`. Returns: list[:obj:`Det3DDataSample`]: Detection results of the input sample. Each Det3DDataSample usually contain 'pred_instances_3d'. And the ``pred_instances_3d`` usually contains following keys. - scores_3d (Tensor): Classification scores, has a shape (num_instances, ) - labels_3d (Tensor): Labels of bboxes, has a shape (num_instances, ). - bbox_3d (:obj:`BaseInstance3DBoxes`): Prediction of bboxes, contains a tensor with shape (num_instances, 7). """ pts_feats = self.extract_feat(batch_inputs_dict) results_list_3d = self.bbox_head.predict(pts_feats, batch_data_samples) detsamples = self.add_pred_to_datasample(batch_data_samples, results_list_3d) return detsamples