# Copyright (c) OpenMMLab. All rights reserved. import copy import numpy as np import pytest import torch from os.path import dirname, exists, join from mmdet3d.models.builder import build_segmentor from mmdet.apis import set_random_seed def _get_config_directory(): """Find the predefined detector config directory.""" try: # Assume we are running in the source mmdetection3d repo repo_dpath = dirname(dirname(dirname(__file__))) except NameError: # For IPython development when this __file__ is not defined import mmdet3d repo_dpath = dirname(dirname(mmdet3d.__file__)) config_dpath = join(repo_dpath, 'configs') if not exists(config_dpath): raise Exception('Cannot find config path') return config_dpath def _get_config_module(fname): """Load a configuration as a python module.""" from mmcv import Config config_dpath = _get_config_directory() config_fpath = join(config_dpath, fname) config_mod = Config.fromfile(config_fpath) return config_mod def _get_segmentor_cfg(fname): """Grab configs necessary to create a segmentor. These are deep copied to allow for safe modification of parameters without influencing other tests. """ import mmcv config = _get_config_module(fname) model = copy.deepcopy(config.model) train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg)) test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg)) model.update(train_cfg=train_cfg) model.update(test_cfg=test_cfg) return model def test_pointnet2_ssg(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') set_random_seed(0, True) pn2_ssg_cfg = _get_segmentor_cfg( 'pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py') pn2_ssg_cfg.test_cfg.num_points = 32 self = build_segmentor(pn2_ssg_cfg).cuda() points = [torch.rand(1024, 6).float().cuda() for _ in range(2)] img_metas = [dict(), dict()] gt_masks = [torch.randint(0, 20, (1024, )).long().cuda() for _ in range(2)] # test forward_train losses = self.forward_train(points, img_metas, gt_masks) assert losses['decode.loss_sem_seg'].item() >= 0 # test forward function set_random_seed(0, True) data_dict = dict( points=points, img_metas=img_metas, pts_semantic_mask=gt_masks) forward_losses = self.forward(return_loss=True, **data_dict) assert np.allclose(losses['decode.loss_sem_seg'].item(), forward_losses['decode.loss_sem_seg'].item()) # test loss with ignore_index ignore_masks = [torch.ones_like(gt_masks[0]) * 20 for _ in range(2)] losses = self.forward_train(points, img_metas, ignore_masks) assert losses['decode.loss_sem_seg'].item() == 0 # test simple_test self.eval() with torch.no_grad(): scene_points = [ torch.randn(500, 6).float().cuda() * 3.0, torch.randn(200, 6).float().cuda() * 2.5 ] results = self.simple_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) # test forward function calling simple_test with torch.no_grad(): data_dict = dict(points=[scene_points], img_metas=[img_metas]) results = self.forward(return_loss=False, **data_dict) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) # test aug_test with torch.no_grad(): scene_points = [ torch.randn(2, 500, 6).float().cuda() * 3.0, torch.randn(2, 200, 6).float().cuda() * 2.5 ] img_metas = [[dict(), dict()], [dict(), dict()]] results = self.aug_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) # test forward function calling aug_test with torch.no_grad(): data_dict = dict(points=scene_points, img_metas=img_metas) results = self.forward(return_loss=False, **data_dict) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) def test_pointnet2_msg(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') set_random_seed(0, True) pn2_msg_cfg = _get_segmentor_cfg( 'pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py') pn2_msg_cfg.test_cfg.num_points = 32 self = build_segmentor(pn2_msg_cfg).cuda() points = [torch.rand(1024, 6).float().cuda() for _ in range(2)] img_metas = [dict(), dict()] gt_masks = [torch.randint(0, 20, (1024, )).long().cuda() for _ in range(2)] # test forward_train losses = self.forward_train(points, img_metas, gt_masks) assert losses['decode.loss_sem_seg'].item() >= 0 # test loss with ignore_index ignore_masks = [torch.ones_like(gt_masks[0]) * 20 for _ in range(2)] losses = self.forward_train(points, img_metas, ignore_masks) assert losses['decode.loss_sem_seg'].item() == 0 # test simple_test self.eval() with torch.no_grad(): scene_points = [ torch.randn(500, 6).float().cuda() * 3.0, torch.randn(200, 6).float().cuda() * 2.5 ] results = self.simple_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) # test aug_test with torch.no_grad(): scene_points = [ torch.randn(2, 500, 6).float().cuda() * 3.0, torch.randn(2, 200, 6).float().cuda() * 2.5 ] img_metas = [[dict(), dict()], [dict(), dict()]] results = self.aug_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) def test_paconv_ssg(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') set_random_seed(0, True) paconv_ssg_cfg = _get_segmentor_cfg( 'paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py') # for GPU memory consideration paconv_ssg_cfg.backbone.num_points = (256, 64, 16, 4) paconv_ssg_cfg.test_cfg.num_points = 32 self = build_segmentor(paconv_ssg_cfg).cuda() points = [torch.rand(1024, 9).float().cuda() for _ in range(2)] img_metas = [dict(), dict()] gt_masks = [torch.randint(0, 13, (1024, )).long().cuda() for _ in range(2)] # test forward_train losses = self.forward_train(points, img_metas, gt_masks) assert losses['decode.loss_sem_seg'].item() >= 0 assert losses['regularize.loss_regularize'].item() >= 0 # test forward function set_random_seed(0, True) data_dict = dict( points=points, img_metas=img_metas, pts_semantic_mask=gt_masks) forward_losses = self.forward(return_loss=True, **data_dict) assert np.allclose(losses['decode.loss_sem_seg'].item(), forward_losses['decode.loss_sem_seg'].item()) assert np.allclose(losses['regularize.loss_regularize'].item(), forward_losses['regularize.loss_regularize'].item()) # test loss with ignore_index ignore_masks = [torch.ones_like(gt_masks[0]) * 13 for _ in range(2)] losses = self.forward_train(points, img_metas, ignore_masks) assert losses['decode.loss_sem_seg'].item() == 0 # test simple_test self.eval() with torch.no_grad(): scene_points = [ torch.randn(200, 6).float().cuda() * 3.0, torch.randn(100, 6).float().cuda() * 2.5 ] results = self.simple_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) # test forward function calling simple_test with torch.no_grad(): data_dict = dict(points=[scene_points], img_metas=[img_metas]) results = self.forward(return_loss=False, **data_dict) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) # test aug_test with torch.no_grad(): scene_points = [ torch.randn(2, 200, 6).float().cuda() * 3.0, torch.randn(2, 100, 6).float().cuda() * 2.5 ] img_metas = [[dict(), dict()], [dict(), dict()]] results = self.aug_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) # test forward function calling aug_test with torch.no_grad(): data_dict = dict(points=scene_points, img_metas=img_metas) results = self.forward(return_loss=False, **data_dict) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) def test_paconv_cuda_ssg(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') set_random_seed(0, True) paconv_cuda_ssg_cfg = _get_segmentor_cfg( 'paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py') # for GPU memory consideration paconv_cuda_ssg_cfg.backbone.num_points = (256, 64, 16, 4) paconv_cuda_ssg_cfg.test_cfg.num_points = 32 self = build_segmentor(paconv_cuda_ssg_cfg).cuda() points = [torch.rand(1024, 9).float().cuda() for _ in range(2)] img_metas = [dict(), dict()] gt_masks = [torch.randint(0, 13, (1024, )).long().cuda() for _ in range(2)] # test forward_train losses = self.forward_train(points, img_metas, gt_masks) assert losses['decode.loss_sem_seg'].item() >= 0 assert losses['regularize.loss_regularize'].item() >= 0 # test forward function set_random_seed(0, True) data_dict = dict( points=points, img_metas=img_metas, pts_semantic_mask=gt_masks) forward_losses = self.forward(return_loss=True, **data_dict) assert np.allclose(losses['decode.loss_sem_seg'].item(), forward_losses['decode.loss_sem_seg'].item()) assert np.allclose(losses['regularize.loss_regularize'].item(), forward_losses['regularize.loss_regularize'].item()) # test loss with ignore_index ignore_masks = [torch.ones_like(gt_masks[0]) * 13 for _ in range(2)] losses = self.forward_train(points, img_metas, ignore_masks) assert losses['decode.loss_sem_seg'].item() == 0 # test simple_test self.eval() with torch.no_grad(): scene_points = [ torch.randn(200, 6).float().cuda() * 3.0, torch.randn(100, 6).float().cuda() * 2.5 ] results = self.simple_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) # test forward function calling simple_test with torch.no_grad(): data_dict = dict(points=[scene_points], img_metas=[img_metas]) results = self.forward(return_loss=False, **data_dict) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) # test aug_test with torch.no_grad(): scene_points = [ torch.randn(2, 200, 6).float().cuda() * 3.0, torch.randn(2, 100, 6).float().cuda() * 2.5 ] img_metas = [[dict(), dict()], [dict(), dict()]] results = self.aug_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) # test forward function calling aug_test with torch.no_grad(): data_dict = dict(points=scene_points, img_metas=img_metas) results = self.forward(return_loss=False, **data_dict) assert results[0]['semantic_mask'].shape == torch.Size([200]) assert results[1]['semantic_mask'].shape == torch.Size([100]) def test_dgcnn(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') set_random_seed(0, True) dgcnn_cfg = _get_segmentor_cfg( 'dgcnn/dgcnn_32x4_cosine_100e_s3dis_seg-3d-13class.py') dgcnn_cfg.test_cfg.num_points = 32 self = build_segmentor(dgcnn_cfg).cuda() points = [torch.rand(4096, 9).float().cuda() for _ in range(2)] img_metas = [dict(), dict()] gt_masks = [torch.randint(0, 13, (4096, )).long().cuda() for _ in range(2)] # test forward_train losses = self.forward_train(points, img_metas, gt_masks) assert losses['decode.loss_sem_seg'].item() >= 0 # test loss with ignore_index ignore_masks = [torch.ones_like(gt_masks[0]) * 13 for _ in range(2)] losses = self.forward_train(points, img_metas, ignore_masks) assert losses['decode.loss_sem_seg'].item() == 0 # test simple_test self.eval() with torch.no_grad(): scene_points = [ torch.randn(500, 6).float().cuda() * 3.0, torch.randn(200, 6).float().cuda() * 2.5 ] results = self.simple_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200]) # test aug_test with torch.no_grad(): scene_points = [ torch.randn(2, 500, 6).float().cuda() * 3.0, torch.randn(2, 200, 6).float().cuda() * 2.5 ] img_metas = [[dict(), dict()], [dict(), dict()]] results = self.aug_test(scene_points, img_metas) assert results[0]['semantic_mask'].shape == torch.Size([500]) assert results[1]['semantic_mask'].shape == torch.Size([200])