# model settings model = dict( type='EncoderDecoder3D', backbone=dict( type='DGCNNBackbone', in_channels=9, # [xyz, rgb, normal_xyz], modified with dataset num_samples=(20, 20, 20), knn_modes=('D-KNN', 'F-KNN', 'F-KNN'), radius=(None, None, None), gf_channels=((64, 64), (64, 64), (64, )), fa_channels=(1024, ), act_cfg=dict(type='LeakyReLU', negative_slope=0.2)), decode_head=dict( type='DGCNNHead', fp_channels=(1216, 512), channels=256, dropout_ratio=0.5, conv_cfg=dict(type='Conv1d'), norm_cfg=dict(type='BN1d'), act_cfg=dict(type='LeakyReLU', negative_slope=0.2), loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, class_weight=None, # modified with dataset loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='slide'))