# optimizer # This schedule is mainly used by models on indoor dataset, # e.g., VoteNet on SUNRGBD and ScanNet lr = 0.008 # max learning rate optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01), clip_grad=dict(max_norm=10, norm_type=2), ) # training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=36, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[24, 32], gamma=0.1) ] # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (4 GPUs) x (8 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=32)