# This schedule is mainly used by models with dynamic voxelization # optimizer lr = 0.003 # max learning rate optim_wrapper = dict( type='OptimWrapper', optimizer=dict( type='AdamW', lr=lr, weight_decay=0.001, betas=(0.95, 0.99)), clip_grad=dict(max_norm=10, norm_type=2), ) param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='CosineAnnealingLR', begin=0, T_max=40, end=40, by_epoch=True, eta_min=1e-5) ] # training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)