# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from mmcv.transforms.base import BaseTransform from mmengine.registry import TRANSFORMS from mmengine.structures import InstanceData from mmdet3d.datasets import WaymoDataset from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes def _generate_waymo_dataset_config(): data_root = 'tests/data/waymo/kitti_format' ann_file = 'waymo_infos_train.pkl' classes = ['Car', 'Pedestrian', 'Cyclist'] # wait for pipline refactor if 'Identity' not in TRANSFORMS: @TRANSFORMS.register_module() class Identity(BaseTransform): def transform(self, info): if 'ann_info' in info: info['gt_labels_3d'] = info['ann_info']['gt_labels_3d'] data_sample = Det3DDataSample() gt_instances_3d = InstanceData() gt_instances_3d.labels_3d = info['gt_labels_3d'] data_sample.gt_instances_3d = gt_instances_3d info['data_samples'] = data_sample return info pipeline = [ dict(type='Identity'), ] modality = dict(use_lidar=True, use_camera=True) data_prefix = data_prefix = dict( pts='training/velodyne', CAM_FRONT='training/image_0') return data_root, ann_file, classes, data_prefix, pipeline, modality def test_getitem(): data_root, ann_file, classes, data_prefix, \ pipeline, modality, = _generate_waymo_dataset_config() waymo_dataset = WaymoDataset( data_root, ann_file, data_prefix=data_prefix, pipeline=pipeline, metainfo=dict(classes=classes), modality=modality) waymo_dataset.prepare_data(0) input_dict = waymo_dataset.get_data_info(0) waymo_dataset[0] # assert the the path should contains data_prefix and data_root assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path'] assert data_root in input_dict['lidar_points']['lidar_path'] for cam_id, img_info in input_dict['images'].items(): if 'img_path' in img_info: assert data_prefix['CAM_FRONT'] in img_info['img_path'] assert data_root in img_info['img_path'] ann_info = waymo_dataset.parse_ann_info(input_dict) # only one instance assert 'gt_labels_3d' in ann_info assert ann_info['gt_labels_3d'].dtype == np.int64 assert 'gt_bboxes_3d' in ann_info assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes) assert torch.allclose(ann_info['gt_bboxes_3d'].tensor.sum(), torch.tensor(43.3103)) assert 'centers_2d' in ann_info assert ann_info['centers_2d'].dtype == np.float32 assert 'depths' in ann_info assert ann_info['depths'].dtype == np.float32