# FreeAnchor for 3D Object Detection ## Introduction We implement FreeAnchor in 3D detection systems and provide their first results with PointPillars on nuScenes dataset. With the implemented `FreeAnchor3DHead`, a PointPillar detector with a big backbone (e.g., RegNet-3.2GF) achieves top performance on the nuScenes benchmark. ``` @inproceedings{zhang2019freeanchor, title = {{FreeAnchor}: Learning to Match Anchors for Visual Object Detection}, author = {Zhang, Xiaosong and Wan, Fang and Liu, Chang and Ji, Rongrong and Ye, Qixiang}, booktitle = {Neural Information Processing Systems}, year = {2019} } ``` ## Usage ### Modify config As in the [baseline config](hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py), we only need to replace the head of an existing one-stage detector to use FreeAnchor head. Since the config is inherit from a common detector head, `_delete_=True` is necessary to avoid conflicts. The hyperparameters are specifically tuned according to the original paper. ```python _base_ = [ '../_base_/models/pointpillars_second_fpn.py', '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( pts_bbox_head=dict( _delete_=True, type='FreeAnchor3DHead', num_classes=10, in_channels=256, feat_channels=256, use_direction_classifier=True, pre_anchor_topk=25, bbox_thr=0.5, gamma=2.0, alpha=0.5, anchor_generator=dict( type='AlignedAnchor3DRangeGenerator', ranges=[[-50, -50, -1.8, 50, 50, -1.8]], scales=[1, 2, 4], sizes=[ [0.8660, 2.5981, 1.], # 1.5/sqrt(3) [0.5774, 1.7321, 1.], # 1/sqrt(3) [1., 1., 1.], [0.4, 0.4, 1], ], custom_values=[0, 0], rotations=[0, 1.57], reshape_out=True), assigner_per_size=False, diff_rad_by_sin=True, dir_offset=0.7854, # pi/4 dir_limit_offset=0, bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.8), loss_dir=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2))) # model training and testing settings train_cfg = dict( pts=dict(code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.25, 0.25])) ``` ## Results ### PointPillars | Backbone |FreeAnchor|Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | :---------: |:-----: |:-----: | :------: | :------------: | :----: |:----: | :------: | |[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|✗|2x|17.1||40.0|53.3|| |[FPN](./hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||43.7|55.1|| |[RegNetX-400MF-FPN](../regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|✗|2x|17.3||44.8|56.4|| |[RegNetX-400MF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||||| |[RegNetX-1.6GF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||||| |[RegNetX-3.2GF-FPN](./hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x||||||