dataset_type = 'SUNRGBDDataset' data_root = 'data/sunrgbd/' class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub') train_pipeline = [ dict( type='LoadPointsFromFile', shift_height=True, load_dim=6, use_dim=[0, 1, 2]), dict(type='LoadAnnotations3D'), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, ), dict( type='GlobalRotScaleTrans', rot_range=[-0.523599, 0.523599], scale_ratio_range=[0.85, 1.15], shift_height=True), dict(type='IndoorPointSample', num_points=20000), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', shift_height=True, load_dim=6, use_dim=[0, 1, 2]), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, ), dict(type='IndoorPointSample', num_points=20000), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points']) ]) ] data = dict( samples_per_gpu=16, workers_per_gpu=4, train=dict( type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'sunrgbd_infos_train.pkl', pipeline=train_pipeline, classes=class_names, filter_empty_gt=False)), val=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'sunrgbd_infos_val.pkl', pipeline=test_pipeline, classes=class_names, test_mode=True), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'sunrgbd_infos_val.pkl', pipeline=test_pipeline, classes=class_names, test_mode=True))