model = dict( type='SMOKEMono3D', backbone=dict( type='DLANet', depth=34, in_channels=3, norm_cfg=dict(type='GN', num_groups=32), init_cfg=dict( type='Pretrained', checkpoint='http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth' )), neck=dict( type='DLANeck', in_channels=[16, 32, 64, 128, 256, 512], start_level=2, end_level=5, norm_cfg=dict(type='GN', num_groups=32)), bbox_head=dict( type='SMOKEMono3DHead', num_classes=3, in_channels=64, dim_channel=[3, 4, 5], ori_channel=[6, 7], stacked_convs=0, feat_channels=64, use_direction_classifier=False, diff_rad_by_sin=False, pred_attrs=False, pred_velo=False, dir_offset=0, strides=None, group_reg_dims=(8, ), cls_branch=(256, ), reg_branch=((256, ), ), num_attrs=0, bbox_code_size=7, dir_branch=(), attr_branch=(), bbox_coder=dict( type='SMOKECoder', base_depth=(28.01, 16.32), base_dims=((0.88, 1.73, 0.67), (1.78, 1.70, 0.58), (3.88, 1.63, 1.53)), code_size=7), loss_cls=dict(type='GaussianFocalLoss', loss_weight=1.0), loss_bbox=dict(type='L1Loss', reduction='sum', loss_weight=1 / 300), loss_dir=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_attr=None, conv_bias=True, dcn_on_last_conv=False), train_cfg=None, test_cfg=dict(topK=100, local_maximum_kernel=3, max_per_img=100))