dataset_type = 'SUNRGBDDataset' data_root = 'data/sunrgbd/' class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub') metainfo = dict(classes=class_names) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/sunrgbd/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=True, load_dim=6, use_dim=[0, 1, 2], backend_args=backend_args), dict(type='LoadAnnotations3D'), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, ), dict( type='GlobalRotScaleTrans', rot_range=[-0.523599, 0.523599], scale_ratio_range=[0.85, 1.15], shift_height=True), dict(type='PointSample', num_points=20000), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=True, load_dim=6, use_dim=[0, 1, 2], backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, ), dict(type='PointSample', num_points=20000) ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=16, num_workers=4, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='sunrgbd_infos_train.pkl', pipeline=train_pipeline, filter_empty_gt=False, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='Depth', backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='sunrgbd_infos_val.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='sunrgbd_infos_val.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) val_evaluator = dict(type='IndoorMetric') test_evaluator = val_evaluator vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')