dataset_type = 'CocoDataset' data_root = 'data/nuimages/' class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/nuimages/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(1280, 720), (1920, 1080)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict( type='MultiScaleFlipAug', img_scale=(1600, 900), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')), ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/nuimages_v1.0-train.json', img_prefix=data_root, classes=class_names, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/nuimages_v1.0-val.json', img_prefix=data_root, classes=class_names, pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/nuimages_v1.0-val.json', img_prefix=data_root, classes=class_names, pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])