dataset_type = 'NuScenesMonoDataset' data_root = 'data/nuscenes/' class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] # Input modality for nuScenes dataset, this is consistent with the submission # format which requires the information in input_modality. input_modality = dict( use_lidar=False, use_camera=True, use_radar=False, use_map=False, use_external=False) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFileMono3D'), dict( type='LoadAnnotations3D', with_bbox=True, with_label=True, with_attr_label=True, with_bbox_3d=True, with_label_3d=True, with_bbox_depth=True), dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle3D', class_names=class_names), dict( type='Collect3D', keys=[ 'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths' ]), ] test_pipeline = [ dict(type='LoadImageFromFileMono3D'), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=False, transforms=[ dict(type='RandomFlip3D'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['img']), ]) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict(type='LoadImageFromFileMono3D'), dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['img']) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'nuscenes_infos_train_mono3d.coco.json', img_prefix=data_root, classes=class_names, pipeline=train_pipeline, modality=input_modality, test_mode=False, box_type_3d='Camera'), val=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'nuscenes_infos_val_mono3d.coco.json', img_prefix=data_root, classes=class_names, pipeline=test_pipeline, modality=input_modality, test_mode=True, box_type_3d='Camera'), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'nuscenes_infos_val_mono3d.coco.json', img_prefix=data_root, classes=class_names, pipeline=test_pipeline, modality=input_modality, test_mode=True, box_type_3d='Camera')) evaluation = dict(interval=2)