# Copyright (c) OpenMMLab. All rights reserved. from mmengine.dataset.dataset_wrapper import ConcatDataset, RepeatDataset from mmengine.dataset.sampler import DefaultSampler from mmengine.visualization.vis_backend import LocalVisBackend from mmdet3d.datasets.s3dis_dataset import S3DISDataset from mmdet3d.datasets.transforms.formating import Pack3DDetInputs from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D, LoadPointsFromFile, NormalizePointsColor) from mmdet3d.datasets.transforms.test_time_aug import MultiScaleFlipAug3D from mmdet3d.datasets.transforms.transforms_3d import (GlobalRotScaleTrans, PointSample, RandomFlip3D) from mmdet3d.evaluation.metrics.indoor_metric import IndoorMetric from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer # dataset settings dataset_type = 'S3DISDataset' data_root = 'data/s3dis/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/s3dis/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None metainfo = dict(classes=('table', 'chair', 'sofa', 'bookcase', 'board')) train_area = [1, 2, 3, 4, 6] test_area = 5 train_pipeline = [ dict( type=LoadPointsFromFile, coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5], backend_args=backend_args), dict(type=LoadAnnotations3D, with_bbox_3d=True, with_label_3d=True), dict(type=PointSample, num_points=100000), dict( type=RandomFlip3D, sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict( type=GlobalRotScaleTrans, rot_range=[-0.087266, 0.087266], scale_ratio_range=[0.9, 1.1], translation_std=[.1, .1, .1], shift_height=False), dict(type=NormalizePointsColor, color_mean=None), dict( type=Pack3DDetInputs, keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type=LoadPointsFromFile, coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5], backend_args=backend_args), dict( type=MultiScaleFlipAug3D, img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type=GlobalRotScaleTrans, rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type=RandomFlip3D, sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type=PointSample, num_points=100000), dict(type=NormalizePointsColor, color_mean=None), ]), dict(type=Pack3DDetInputs, keys=['points']) ] train_dataloader = dict( batch_size=8, num_workers=4, sampler=dict(type=DefaultSampler, shuffle=True), dataset=dict( type=RepeatDataset, times=13, dataset=dict( type=ConcatDataset, datasets=[ dict( type=S3DISDataset, data_root=data_root, ann_file=f's3dis_infos_Area_{i}.pkl', pipeline=train_pipeline, filter_empty_gt=True, metainfo=metainfo, box_type_3d='Depth', backend_args=backend_args) for i in train_area ]))) val_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type=DefaultSampler, shuffle=False), dataset=dict( type=S3DISDataset, data_root=data_root, ann_file=f's3dis_infos_Area_{test_area}.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type=DefaultSampler, shuffle=False), dataset=dict( type=S3DISDataset, data_root=data_root, ann_file=f's3dis_infos_Area_{test_area}.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) val_evaluator = dict(type=IndoorMetric) test_evaluator = val_evaluator vis_backends = [dict(type=LocalVisBackend)] visualizer = dict( type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer')