# Copyright (c) OpenMMLab. All rights reserved. from mmcv.transforms.processing import Resize from mmengine.dataset.sampler import DefaultSampler from mmengine.visualization.vis_backend import LocalVisBackend from mmdet3d.datasets.kitti_dataset import KittiDataset from mmdet3d.datasets.transforms.formating import Pack3DDetInputs from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D, LoadImageFromFileMono3D) from mmdet3d.datasets.transforms.transforms_3d import RandomFlip3D from mmdet3d.evaluation.metrics.kitti_metric import KittiMetric from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Pedestrian', 'Cyclist', 'Car'] input_modality = dict(use_lidar=False, use_camera=True) metainfo = dict(classes=class_names) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/kitti/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None train_pipeline = [ dict(type=LoadImageFromFileMono3D, backend_args=backend_args), dict( type=LoadAnnotations3D, with_bbox=True, with_label=True, with_attr_label=False, with_bbox_3d=True, with_label_3d=True, with_bbox_depth=True), dict(type=Resize, scale=(1242, 375), keep_ratio=True), dict(type=RandomFlip3D, flip_ratio_bev_horizontal=0.5), dict( type=Pack3DDetInputs, keys=[ 'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'centers_2d', 'depths' ]), ] test_pipeline = [ dict(type=LoadImageFromFileMono3D, backend_args=backend_args), dict(type=Resize, scale=(1242, 375), keep_ratio=True), dict(type=Pack3DDetInputs, keys=['img']) ] eval_pipeline = [ dict(type=LoadImageFromFileMono3D, backend_args=backend_args), dict(type=Pack3DDetInputs, keys=['img']) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type=DefaultSampler, shuffle=True), dataset=dict( type=KittiDataset, data_root=data_root, ann_file='kitti_infos_train.pkl', data_prefix=dict(img='training/image_2'), pipeline=train_pipeline, modality=input_modality, load_type='fov_image_based', test_mode=False, metainfo=metainfo, # we use box_type_3d='Camera' in monocular 3d # detection task box_type_3d='Camera', backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type=DefaultSampler, shuffle=False), dataset=dict( type=KittiDataset, data_root=data_root, data_prefix=dict(img='training/image_2'), ann_file='kitti_infos_val.pkl', pipeline=test_pipeline, modality=input_modality, load_type='fov_image_based', metainfo=metainfo, test_mode=True, box_type_3d='Camera', backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type=KittiMetric, ann_file=data_root + 'kitti_infos_val.pkl', metric='bbox', backend_args=backend_args) test_evaluator = val_evaluator vis_backends = [dict(type=LocalVisBackend)] visualizer = dict( type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer')