import mmcv import torch import torch.nn as nn from torch.autograd import Function from . import roiaware_pool3d_ext class RoIAwarePool3d(nn.Module): def __init__(self, out_size, max_pts_per_voxel=128, mode='max'): super().__init__() """ Args: out_size (int or tuple): n or [n1, n2, n3] max_pts_per_voxel (int): m mode (str): 'max' or 'avg' """ self.out_size = out_size self.max_pts_per_voxel = max_pts_per_voxel assert mode in ['max', 'avg'] pool_method_map = {'max': 0, 'avg': 1} self.mode = pool_method_map[mode] def forward(self, rois, pts, pts_feature): """ Args: rois (torch.Tensor): [N, 7],in LiDAR coordinate, (x, y, z) is the bottom center of rois pts (torch.Tensor): [npoints, 3] pts_feature (torch.Tensor): [npoints, C] Returns: pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C] """ return RoIAwarePool3dFunction.apply(rois, pts, pts_feature, self.out_size, self.max_pts_per_voxel, self.mode) class RoIAwarePool3dFunction(Function): @staticmethod def forward(ctx, rois, pts, pts_feature, out_size, max_pts_per_voxel, mode): """ Args: rois (torch.Tensor): [N, 7], in LiDAR coordinate, (x, y, z) is the bottom center of rois pts (torch.Tensor): [npoints, 3] pts_feature (torch.Tensor): [npoints, C] out_size (int or tuple): n or [n1, n2, n3] max_pts_per_voxel (int): m mode (int): 0 (max pool) or 1 (average pool) Returns: pooled_features (torch.Tensor): [N, out_x, out_y, out_z, C] """ if isinstance(out_size, int): out_x = out_y = out_z = out_size else: assert len(out_size) == 3 assert mmcv.is_tuple_of(out_size, int) out_x, out_y, out_z = out_size num_rois = rois.shape[0] num_channels = pts_feature.shape[-1] num_pts = pts.shape[0] pooled_features = pts_feature.new_zeros( (num_rois, out_x, out_y, out_z, num_channels)) argmax = pts_feature.new_zeros( (num_rois, out_x, out_y, out_z, num_channels), dtype=torch.int) pts_idx_of_voxels = pts_feature.new_zeros( (num_rois, out_x, out_y, out_z, max_pts_per_voxel), dtype=torch.int) roiaware_pool3d_ext.forward(rois, pts, pts_feature, argmax, pts_idx_of_voxels, pooled_features, mode) ctx.roiaware_pool3d_for_backward = (pts_idx_of_voxels, argmax, mode, num_pts, num_channels) return pooled_features @staticmethod def backward(ctx, grad_out): """ Args: grad_out: [N, out_x, out_y, out_z, C] Returns: grad_in: [npoints, C] """ ret = ctx.roiaware_pool3d_for_backward pts_idx_of_voxels, argmax, mode, num_pts, num_channels = ret grad_in = grad_out.new_zeros((num_pts, num_channels)) roiaware_pool3d_ext.backward(pts_idx_of_voxels, argmax, grad_out.contiguous(), grad_in, mode) return None, None, grad_in, None, None, None if __name__ == '__main__': pass