# H3DNet: 3D Object Detection Using Hybrid Geometric Primitives ## Introduction We implement H3DNet and provide the result and checkpoints on ScanNet datasets. ``` @inproceedings{zhang2020h3dnet, author = {Zhang, Zaiwei and Sun, Bo and Yang, Haitao and Huang, Qixing}, title = {H3DNet: 3D Object Detection Using Hybrid Geometric Primitives}, booktitle = {Proceedings of the European Conference on Computer Vision}, year = {2020} } ``` ## Results ### ScanNet | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | [MultiBackbone](./h3dnet_3x8_scannet-3d-18class.py) | 3x |7.9||66.43|48.01|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/h3dnet/h3dnet_scannet-3d-18class/h3dnet_scannet-3d-18class_20200830_000136-02e36246.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/h3dnet/h3dnet_scannet-3d-18class/h3dnet_scannet-3d-18class_20200830_000136.log.json) | **Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version < 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_h3dnet_checkpoints.py](../../tools/model_converters/convert_h3dnet_checkpoints.py): ``` python ./tools/model_converters/convert_h3dnet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH} ``` Then you can use the converted checkpoints following [getting_started.md](../../docs/en/getting_started.md).