# SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation ## Introduction We implement SMOKE and provide the results and checkpoints on KITTI dataset. ``` @inproceedings{liu2020smoke, title={Smoke: Single-stage monocular 3d object detection via keypoint estimation}, author={Liu, Zechen and Wu, Zizhang and T{\'o}th, Roland}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops}, pages={996--997}, year={2020} } ``` ## Results ### KITTI | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | :---------: | :-----: | :------: | :------------: | :----: | :------: | |[DLA34](./smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py)|6x|9.64||13.85|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) Note: mAP represents Car moderate 3D strict AP11 results. Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 metric: | | Easy | Moderate | Hard | |-------------|:-------------:|:--------------:|:------------:| | Car | 16.92 / 22.97 | 13.85 / 18.32 | 11.90 / 15.88| | Pedestrian | 11.13 / 12.61| 11.10 / 11.32 | 10.67 / 11.14| | Cyclist | 0.99 / 1.47 | 0.54 / 0.65 | 0.55 / 0.67 |